Omega-3 fatty acids (Ω3FA) are known to reduce hypertriglyceridemia- and inflammation-induced vascular wall diseases. However, mechanisms of their effects are not completely clear. We examined, whether 10-day Ω3FA diet can reduce bacterial lipopolysaccharide-induced changes in expression of gap junction protein connexin40 (Cx40) in the aorta of hereditary hypertriglyceridemic (hHTG) rats. After administration of a single dose of lipopolysaccharide (LPS, 1 mg/kg, i.p.) to adult hHTG rats, animals were fed with Ω3FA diet (30 mg/kg/day) for 10 days. LPS decreased Cx40 expression that was associated with reduced acetylcholine-induced relaxation of aorta. Ω3FA administration to LPS rats had partial anti-inflammatory effects, associated with increased Cx40 expression and improved endothelium dependent relaxation of the aorta. Our results suggest that 10-day Ω3FA diet could protect endothelium-dependent relaxation of the aorta of hHTG rats against LPS-induced damage through the modulation of endothelial Cx40 expression, K. Frimmel, R. Sotníková, J. Navarová, I. Bernátová, J. Križák, Z. Haviarová, B. Kura, J. Slezák, Ľ. Okruhlicová., and Obsahuje bibliografii
The effect of three therapeutically used drugs and five polyphenolic compounds on the mechanism of oxidative burst was compared in whole blood and isolated neutrophils at cellular and molecular level. In 10 μM concentration, the compounds investigated decreased the oxidative burst of whole blood in the rank order of potency: N-feruloylserotonin (N-f-5HT) > curcumin (CUR) > quercetin (QUER) > arbutin (ARB) > resveratrol (RES) > dithiaden (DIT) > carvedilol (CARV) > brompheniramine (BPA). The ratio between the percentage inhibition of extracellular versus intracellular chemiluminescence (CL) followed the rank order QUER > N-f-5HT > RES > CUR > DIT and is indicative of the positive effect of the compounds tested against oxidative burst of neutrophils, demonstrating suppression of reactive oxygen species extracellularly with minimal alteration of intracellular reactive oxygen species (ROS). Activation of protein kinase C was significantly decreased by DIT, CUR, QUER and N-f-5HT. CARV, DIT, QUER and ARB reduced activated neutrophil myeloperoxidase release more significantly compared with the effect on superoxide anion generation. All compounds tested increased the activity of caspase-3 in cell-free system. It is suggested that other regulatory mechanisms than protein kinase C might participate in the inhibition of neutrophil activation with the compounds tested. Different mechanisms are concerned in controlling the assembly of NADPH oxidase and the regulatory role of calcium ions is suggested. Compounds decreasing the amount of extracellular ROS generation, yet affecting but minimally intracellular ROS generation, are promising for further investigation in vivo., R. Nosáľ, K. Drábiková, V. Jančinová, T. Mačičková, J. Pečivová, T. Perečko, J. Harmatha, J. Šmidrkal., and Obsahuje bibliografii
Ongoing interest in brain ischemia research has provided data showing that ischemia may be involved in the pathogenesis of Alzheimer disease. Brain ischemia in the rat produces a stereotyped pattern of selectiv e neuronal degeneration, which mimics early Alzheimer disease pathology. The objective of this study was to further develop an d characterize cardiac arrest model in rats, which provides practical way to analyze Alzheimer- type neurodegeneration. Rats were made ischemic by cardiac arrest. Blood-brain barrier (BBB) insufficiency, accumulation of different parts of amyloid precursor protein (APP) and platelets inside and outside BBB vessels were investigated in ischemic brain up to 1-year survival. Isch emic brain tissue demonstrated haphazard BBB changes. Toxic fr agments of APP deposits were associated with the BBB vessels. Moreover our study revealed platelet aggregates in- and outside BBB vessels. Toxic parts of APP and platelet aggregates correlated very well with BBB permeability. Progressive injury of the ischemic brain parenchyma may be caused not only by a degeneration of neurons destroyed during ischemia but also by chronic damage in BBB. Chronic ischemic BBB insufficiency with accumulation of toxic components of APP in the brain tissue perivascular space, may gradually over a lifetime, progress to brain atrophy and to full blown Alzheimer-type pathology., M. Jabłoński., and Obsahuje bibliografii a bibliografické odkazy
Mitral allografts are still used only exceptionally in the mitral or tricuspid position. The main indication remains infectious endocarditis of atrioventricular valves for its flexibility and low risk of infection. The aim of our study was to evaluate 1-year results of mitral allografts transplantation into the tricuspid position in a sheep model. Mitral allografts were processed, cryopreserved, a nd transplanted into the tricuspid position anatomically (Group I - 11 animals) or antianatomically (Group II - 8 animals). All survivors (4 from Group I, and 3 from Group II) were checked at 3, 6, and 12 months by echocardiography with the exception of one survivor from Group II (which was examinated only visually). Examination throughout follow-up included for mitral allograft regurgitation and annuli dilatation. At postmortem, the papillary muscles were healed and firmly anchored to the right ventricular wall in all subjects. Transventricular fixation of the papillary muscles with buttressed sutures was proven to be a stable, reproducible, and safe method for anchoring mitral allograft leaflets. There were no significant differences between the two implan tation methods. Annulus support of mitral allografts might be very useful in this type of operation and could prevent annular dilatation., A. Mokracek, J. Canadyova, Z. Simunkova, R. Fiala, M. Hmirak, M. Sulda, J. Burkert, J. Tintera, P. Kobylka, J. Spatenka., and Obsahuje bibliografii
Increased generation of reactive oxygen species results in the formation of fluorescent end-products of lipid peroxidation – lipofuscin-like pigments (LFP). LFP increased up to six-fold from the fetal value in the rat heart immediately after birth. In the experimental design of this study the fetuses were sampled 1 day before birth, and then the samples were collected on postnatal days 1, 4, 7, 10, 15, 30, and 60. Males and females were compared on day 30 and 60 when the difference between right and left ventricle was studied as well. Four LFP fluorophores were analyzed: F355/440, F310/470, F350/450, F315/450 (excitation/emission, nm). All fluorophores decreased on day 4 relative to day 1, subsequent transient increases ended in a significant decrease on day 60. However, the LFP levels on day 60 are still about threefold higher than those in fetuses. Differences between male and female hearts were observed on day 30. The corresponding male ventricles contained by one third higher concentration of LFP than the female counterparts. The increase in LFP concentration in male ventricles on day 30 was only transient, no difference between corresponding male and female ventricles was found on day 60. The most distinguished feature in the male heart was a sharp LFP decrease in the right ventricle on day 60., J. Wilhelm, I. Ošťádalová., and Obsahuje seznam literatury
a1_The purpose of the present study was to compare the ontogenetic development of the activity of myocardial energy-supplying enzymes in two mammalian species, differing significantly in their level of maturation at birth. The animals were investigated during the late prenatal period and 2, 7, 14, 21, 25, 30, 63, 120 and 730 days after birth in the rat and 2, 21, 84 and 175 days in the guinea-pig. The following enzymes were assayed in the right and left ventricular myocardium: lactate dehydrogenase (LDH, lactate uptake and/or formation), triose phosphate dehydrogenase (TPDH, carbohydrate metabolism), glycerol phosphate dehydrogenase (GPDH, glycerol-P shuttle)), hexokinase (HK, glucose phosphorylation), malate dehydrogenase (MDH, tricarboxylic cycle), citrate synthase (CS, tricarboxylic cycle) and hydroxyacyl-CoA dehydrogenase (HOADH, fatty acid breakdown). The rat heart, highly immature at birth, exhibits three different developmental patterns of energy-supplying enzymes, identical in both ventricles: (i) two mitochondrial enzymes of aerobic metabolism (CS, HOADH) and GPDH have a relatively low activity at the end of prenatal life; thereafter their activity steadily increases, approaching the adult levels between the 3rd and 4th postnatal weeks. A significant decrease was observed between the 4th and 24th months. (ii) MDH and LDH: prenatal values were significantly higher as compared with the 2nd postnatal day; after this period the activities increased up to adulthood (4 months) and decreased during senescence. (iii) The activities of HK and TPDH are characterized by only moderate changes during development. HK differs from all other enzymes by the highest prenatal values, which exceed even adult values. In contradiction to the rat heart, the developmental differences in more mature guinea-pig heart were significantly less pronounced., a2_The only ontogenetic differences observed were the lower activities of enzymes connected with aerobic metabolism at the end of the prenatal period. Our results point to possible differences in the development of adaptive metabolic pathways in animals with different levels of maturation at birth., A. Bass, M. Stejskalová, A. Stieglerová, B. Ošťádal, M. Šamánek., and Obsahuje bibliografii
Our data indicate the significant intrinsic efficacy of GABABreceptors in rat brain cortex already at birth (PD1, PD2). Subsequently, baclofen- and SKF97541-stimulated G-protein activity, measured by agonist-stimulated, high-affinity [35S]GTPγS binding assay, was increased; the highest level of both baclofen and SKF97541-stimulated [35S]GTPγS binding was detected between PD10 and PD15. In older rats, baclofen- and SKF97541- stimulated [35S]GTPγS binding was continuously decreased so, that the level in adult, 90-days old animals, was not different from that in newborn animals. The potency of G-protein response to baclofen (characterized by EC50 values) was also high at birth but unchanged by further postnatal development. An individual variance among different agonists was observed in this respect as the potency of SKF97541 response was decreased between the birth and adulthood. Accordingly, the highest plasma membrane density of GABAB-R, determined by saturation binding assay with antagonist [3 H]CGP54626, was measured in 1-day old animals (2.27±0.08 pmol · mg-1). The further development was reflected in a decrease of [3 H]CGP54626 binding as the Bmax values of 1.38±0.05 and 0.93±0.04 pmol · mg-1 were determined in PM isolated from 13- and 90-days old rats, respectively., D. Kagan, ... [et al.]., and Obsahuje seznam literatury
An ontogenetic study of ecto-ATPase activity and the content of enzyme proteins was assessed in the caudate nucleus and hippocampal synaptic plasma membranes isolated from rats at various ages (15, 30, 90, 180 and 365 days). The ontogenetic profile revealed that the enzyme activities in both brain areas were the highest on day 30 and 365, while the ecto-ATPase protein abundance was the highest on day 15 after birth. Possible explanation for obtained ontogenetic profile and the discrepancy between activity and abundance may reside in the fact that ecto-ATPase during development could exert additional roles other than those related to metabolism of ATP. It is likely that ecto-ATPase, regulating the concentration of ATP and adenosine in synaptic cleft, has important role in the processes of brain development and aging., A. Banjac, N. Nedeljković, A. Horvat, D. Kanazir, G. Nizekić., and Obsahuje bibliografii
The article gives an overview of developmental aspects of the ontogeny of pain both in experimental models and in children. The whole article is devoted to the ontogenesis in pain perception and the possible influence on it. The role of endogenous opioids on the development of pain and other important substances such as serotonin, nerve growth factor (NGF) and nicotine are mentioned. There are also important differences of the ontogenesis of thermal and mechanical nociceptive stimulation. The physiological and pathophysiological findings are the backgrounds for principles of treatment, taking into account the special status of analgesics during ontogeny. In particular there are mentioned the special effects of endogenous opioids and especially morphine. It describes the role of vitamin D and erythropoietin during the development of pain perception. This article also mentioned the critical developmental periods in relation to the perception of pain. The attention is paid to stress and immunological changes during the ontogeny of pain. Another important role is played by microglia. The work is concluded by some statements about the use of physiological and pathophysiological findings during the treatment of pain in pediatric practice. Codein analgesia is also described because codein starts to be very modern drug with the dependence., R. Rokyta, J. Fricová., and Obsahuje seznam literatury
b1_Large number of extracellular signals is received by plasma membrane receptors which, upon activation, transduce information into the target cell interior via trimeric G-proteins (GPCRs) and induce activation or inhibition of adenylyl cyclase enzyme activity (AC). Receptors for opioid drugs such as morphine ( μ-OR, δ-OR and κ-OR) belong to rhodopsin family of GPCRs. Our recent results indicated a specific up-regulation of AC I (8-fold) and AC II (2.5-fold) in plasma membranes (PM) isolated from rat brain cortex exposed to increasing doses of morphine (10-50 mg/kg) for 10 days. Increase of ACI and ACII represented the specific effect as the amount of ACIII-ACIX, prototypical PM marker Na, K-ATPase and trimeric G-protein α and β subunits was unchanged. The up-regulation of ACI and ACII faded away after 20 days since the last dose of morphine. Proteomic analysis of these PM indicated that the brain cortex of morphine-treated animals cannot be regarded as being adapted to this drug because significant up-regulation of proteins functionally related to oxidativ e stress and alteration of brain energy metabolism occurred. The number of δ-OR was increased 2-fold and their sensitivity to monovalent cations was altered. Characterization of δ-OR-G-protein coupling in model HEK293 cell line indicated high ability of lithium to support affinity of δ-OR response to agonist stimulation. Our studies of PM structure and function in context with desensitization of GPCRs action were extended by data indicating part icipation of cholesterol-enriched membrane domains in agonist-specific internalization of δ-OR. In HEK293 cells stably expressing δ-OR-G i 1 α fusion protein, depletion of PM cholesterol was associated with the decrease in affinity of G-protein response to agonist stimulation, whereas maximum response was unchanged., b2_drophobic interior of isolated PM became more “fluid”, chaotically organized and accessible to water molecules. Validity of this conclusion was supported by the analysis of an immediate PM environment of cholesterol molecules in living δ -OR-G i 1 α-HEK293 cells by fluorescent probes 22- and 25-NBD-cholesterol. The alteration of plasma membrane structure by cholesterol depletion made the membrane more hydrated. Unders tanding of the positive and negative feedback regulatory loops among different OR-initiated signaling cascades (μ-, δ -, and κ-OR) is crucial for understanding of the long-term mechanisms of drug addiction as the decrease in functional activity of μ-OR may be compensated by increase of δ-OR and/or κ-OR signaling., H. Ujčíková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy