Let $R$ be a left and right Noetherian ring and $C$ a semidualizing $R$-bimodule. We introduce a transpose ${\rm Tr_{c}}M$ of an $R$-module $M$ with respect to $C$ which unifies the Auslander transpose and Huang's transpose, see Z. Y. Huang, On a generalization of the Auslander-Bridger transpose, Comm. Algebra 27 (1999), 5791–5812, in the two-sided Noetherian setting, and use ${\rm Tr_{c}}M$ to develop further the generalized Gorenstein dimension with respect to $C$. Especially, we generalize the Auslander-Bridger formula to the generalized Gorenstein dimension case. These results extend the corresponding ones on the Gorenstein dimension obtained by Auslander in M. Auslander, M. Bridger, Stable Module Theory, Mem. Amer. Math. Soc. vol. 94, Amer. Math. Soc., Providence, RI, 1969.
Let $R$ be a commutative Noetherian ring and ${\mathfrak a}$ an ideal of $R$. We introduce the concept of ${\mathfrak a}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak a}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak a}, H^i_{{\mathfrak a}}(M))$ is ${\mathfrak a}$-weakly Laskerian for all $i<s$ and all $j$, then for any ${\mathfrak a}$-weakly Laskerian submodule $X$ of $H^s_{{\mathfrak a}}(M)$, the $R$-module ${\rm Hom}_R(R/{\mathfrak a},H^s_{{\mathfrak a}}(M)/X)$ is ${\mathfrak a}$-weakly Laskerian. In particular, the set of associated primes of $H^s_{\mathfrak a}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an ${\mathfrak a}$-weakly Laskerian $R$-module such that $ H^i_{{\mathfrak a}}(N)$ is ${\mathfrak a}$-weakly Laskerian for all $i<s$, then the set of associated primes of $H^s_{\mathfrak a}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).
Given a set of points in the complex plane, an incomplete polynomial is defined as the one which has these points as zeros except one of them. The classical result known as Gauss-Lucas theorem on the location of zeros of polynomials and their derivatives is extended to convex linear combinations of incomplete polynomials. An integral representation of convex linear combinations of incomplete polynomials is also given.
In this paper, a generalized bivariate lifetime distribution is introduced. This new model is constructed based on a dependent model consisting of two parallel-series systems which have a random number of parallel subsystems with fixed components connected in series. The probability that one system fails before the other one is measured by using competing risks. Using the extreme-value copulas, the dependence structure of the proposed model is studied. Kendall's tau, Spearman's rho and tail dependences are investigated for some special cases. Simulation results are given to examine the effectiveness of the proposed model.
We prove a generalized maximum principle for subsolutions of boundary value problems, with mixed type unilateral conditions, associated to a degenerate parabolic second-order operator in divergence form.
In the current work, a new notion of n-weak amenability of Banach algebras using homomorphisms, namely (ϕ, ψ)-n-weak amenability is introduced. Among many other things, some relations between (ϕ, ψ)-n-weak amenability of a Banach algebra A and Mm(A), the Banach algebra of m × m matrices with entries from A, are studied. Also, the relation of this new concept of amenability of a Banach algebra and its unitization is investigated. As an example, it is shown that the group algebra L 1 (G) is (ϕ, ψ)-n-weakly amenable for any bounded homomorphisms ϕ and ψ on L 1 (G).
In this paper the control of robotic manipulation is investigated. Manipulation system analysis and control are approached in a general framework. The geometric aspect of manipulation system dynamics is strongly emphasized by using the well developed techniques of geometric multivariable control theory. The focus is on the (functional) control of the crucial outputs in robotic manipulation, namely the reachable internal forces and the rigid-body object motions. A geometric control procedure is outlined for decoupling these outputs and for their perfect trajectory tracking. The control of robotic manipulation is investigated. These are mechanical structures more complex than conventional serial-linkage arms. The robotic hand with possible inner contacts is a paradigm of general manipulation systems. Unilateral contacts between mechanical parts make the control of manipulation system quite involved. In fact, contacts can be considered as unactuated (passive) joints. The main goal of dexterous manipulation consists of controlling the motion of the manipulated object along with the grasping forces exerted on the object. In the robotics literature, the general problem of force/motion control is known as "hybrid control". This paper is focused on the decoupling and functional controllability of contact forces and object motions. The goal is to synthesize a control law such that each output vector, namely the grasping force and the object motion, can be independently controlled by a corresponding set of generalized input forces. The functional force/motion controllability is investigated. It consists of achieving force and motion tracking with no error on variables transients. The framework used in this paper is the geometric approach to the structural synthesis of multivariable systems.
We deal with a suitable weak solution (v, p) to the Navier-Stokes equations in a domain Ω ⊂ R 3 . We refine the criterion for the local regularity of this solution at the point (fx0, t0), which uses the L 3 -norm of v and the L 3/2 -norm of p in a shrinking backward parabolic neighbourhood of (x0, t0). The refinement consists in the fact that only the values of v, respectively p, in the exterior of a space-time paraboloid with vertex at (x0, t0), respectively in a ''small'' subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point (x0, t0) if v and p are “smooth” outside the paraboloid.