A cytoskeletal network contributes significantly to intracellular regulation of mechanical stresses, cell motility and cellular mechanics. Thus, it plays a vital role in defining the mechanical behaviour of the cell. Among the wide range of models proposed for dynamic behaviour of cytoskeleton, the soft glassy rheology model has gained special attention due to the resemblance of its predictions with the mechanical data measured from experiment. The soft glassy material, theory of soft glassy rheology and experiment on cytoskeleton has been discussed, which leads to a discussion of the unique features and flaws of the model. The soft glassy rheological model provides a unique explanation of the cytoskeleton ability to deform, flow and remodel. and Obsahuje seznam literatury
In this paper an original algorithm for tlie choice of a relevaiit
belief formula is presented. Belief forinulas are treated as external representations of internal States of cognition directed at an ontologically existing atom object. This algorithrn is based on the idea of intentional semantics and uses soft methods based on the theory of consensus and choice.
For any d≥11 we construct graphs of degree d, diameter 2, and order 825d2+O(d), obtained as lifts of dipoles with voltages in cyclic groups. For Cayley Abelian graphs of diameter two a slightly better result of 925d2+O(d) has been known \cite{MSS} but it applies only to special values of degrees d depending on prime powers.