The chromosome complements of thirteen species of the planthopper family Dictyopharidae are described and illustrated. For each species, the structure of testes and, on occasion, ovaries is additionally outlined in terms of the number of seminal follicles and ovarioles. The data presented cover the tribes Nersiini, Scoloptini and Dictyopharini of the subfamily Dictyopharinae and the tribes Ranissini, Almanini, and Orgeriini of the Orgeriinae. The data on the tribes Nersiini and Orgeriini are provided for the first time. Males of Hyalodictyon taurinum and Trimedia cf. viridata (Nersiini) have 2n = 26 + X; Scolops viridis, S. sulcipes, and S. abnormis (Scoloptini) 2n = 36 + X; Callodictya krueperi (Dictyopharini) 2n = 26 + X; Ranissus edirneus and Schizorgerius scytha (Ranissini) 2n = 26 + X. Males of Almana longipes and Bursinia cf. genei (Almanini) have 2n = 26 + X and 2n = 24 + XY, respectively. The latter chromosome complement was not recorded previously for the tribe Almanini. Males of Orgerius ventosus and Deserta cf. bipunctata (Orgeriini) have 2n = 26 + X. The testes of males of A. longipes and B. cf. genei each have 4 seminal follicles, which is characteristic of the tribe Almanini. Males of all other species have 6 follicles per testis. When the ovaries of a species were also studied, the number of ovarioles was coincident with that of seminal follicles. For comparison, Capocles podlipaevi (2n = 24 + X and 6 follicles per testis in males) from the Fulgoridae, the sister family to Dictyopharidae, was also studied. We supplemented all the data obtained with our earlier observations on Dictyopharidae. The chromosomal complement of 2n = 28 + X or that of 2n = 26 + X and 6 follicles per testis are suggested to be the ancestral condition among Dictyopharidae, from which taxa with various chromosome numbers and testes each with 4 follicles have differentiated.
We compare the forcing-related properties of a complete Boolean algebra ${\mathbb B}$ with the properties of the convergences $\lambda _{\mathrm s}$ (the algebraic convergence) and $\lambda _{\mathrm {ls}}$ on ${\mathbb B}$ generalizing the convergence on the Cantor and Aleksandrov cube, respectively. In particular, we show that $\lambda _{\mathrm {ls}}$ is a topological convergence iff forcing by ${\mathbb B}$ does not produce new reals and that $\lambda _{\mathrm {ls}}$ is weakly topological if ${\mathbb B}$ satisfies condition $(\hbar )$ (implied by the ${\mathfrak t}$-cc). On the other hand, if $\lambda _{\mathrm {ls}}$ is a weakly topological convergence, then ${\mathbb B}$ is a $2^{\mathfrak h}$-cc algebra or in some generic extension the distributivity number of the ground model is greater than or equal to the tower number of the extension. So, the statement “The convergence $\lambda _{\mathrm {ls}}$ on the collapsing algebra ${\mathbb B}=\mathop {\mathrm {ro}} (^{<\omega }\omega _2)$ is weakly topological“ is independent of ZFC.