The main purpose of this paper is to give a new approach for partial metric spaces. We first provide the new concept of KM-fuzzy partial metric, as an extension of both the partial metric and KM-fuzzy metric. Then its relationship with the KM-fuzzy quasi-metric is established. In particularly, we construct a KM-fuzzy quasi-metric from a KM-fuzzy partial metric. Finally, after defining the notion of partial pseudo-metric systems, a one-to-one correspondence between partial pseudo-metric systems and KM-fuzzy partial pseudo-metrics is constructed. Furthermore, a fuzzifying topology τP on X deduced from KM-fuzzy partial metric is established and some properties of this fuzzifying topology are discussed.
We present a new approach to solving boundary value problems on noncompact intervals for second order differential equations in case of nonlocal conditions. Then we apply it to some problems in which an initial condition, an asymptotic condition and a global condition is present. The abstract method is based on the solvability of two auxiliary boundary value problems on compact and on noncompact intervals, and uses some continuity arguments and analysis in the phase space. As shown in the applications, Kneser-type properties of solutions on compact intervals and a priori bounds of solutions on noncompact intervals are key ingredients for the solvability of the problems considered, as well as the properties of principal solutions of an associated half-linear equation. The application of this method leads to some new existence results, which complement and extend some previous ones in the literature.
Estimating the pre- failure points for rocks during laboratory testing is not a trivial task. In this study, a new approach is introduced that utilizes change in the slope of the load-deformation curves of rock in the loading cycle for marking the onset of failure point during uniaxial test of a given rock. At each step, load-deformation data footprints of the rock under test are inspected and a decision is made whether the failure has started or not. The load-deformation data obtained from different tests of different rocks are examined including; Norite, Granite, Limestone, Sandstone, Siltstone and Marble. The computational results over 154 cored rock samples show that the proposed approach locates the onset of failure point for a given rock with an acceptable degree of accuracy., Deniz Mamurekli., and Obsahuje bibliografii
Rock brittleness is one of the most important issues in rock mechanics. There is not yet an available method for defining or measuring directly the rock brittleness. The aim of this study is to suggest a new chemical index parameter for the prediction of basaltic rocks’ brittleness. In the order of that abovementioned purpose, a total of 23 basaltic rock samples were collected from different region of Turkey. Samples were initially tested to determine their chemical properties. Then, mechanical tests were carried out to define the brittleness indices (B1, B2, and B3) for each corresponding sample. Finally, relations between parameters obtained from test results and brittleness indices were examined with regression analysis. According to the results obtained, a new chemical parameter (CP) was proposed for predicting brittleness via major oxide element components of basaltic rocks. It was found out that, B1 and B2 are not reliable parameters for predicting the different properties, however; B3 and CP can be employed as good criteria for predicting the different properties of basaltic rocks (especially in terms of chemical and mechanical properties)., Candan Bilen, Selman Er, Atiye Tuğrul and Murat Yilmaz., and Obsahuje bibliografii
By a chordal graph is meant a graph with no induced cycle of length $\ge 4$. By a ternary system is meant an ordered pair $(W, T)$, where $W$ is a finite nonempty set, and $T \subseteq W \times W \times W$. Ternary systems satisfying certain axioms (A1)–(A5) are studied in this paper; note that these axioms can be formulated in a language of the first-order logic. For every finite nonempty set $W$, a bijective mapping from the set of all connected chordal graphs $G$ with $V(G) = W$ onto the set of all ternary systems $(W, T)$ satisfying the axioms (A1)–(A5) is found in this paper.
Expected utility model can be derived not only in probability theory, but also in other models proposed to quantify someone’s belief. We deal with the transferable belief model and use the pignistic probabilities when decision is required. We introduce a new class of graphical representation, expected utility networks with pignistic probabilities and define conditional expected utility independence to decompose the expected utility function.
With a chaotic system being divided into linear and nonlinear parts, a new approach is presented to realize generalized chaos synchronization by using feedback control and parameter commutation. Based on a linear transformation, the problem of generalized synchronization (GS) is transformed into the stability problem of the synchronous error system, and an existence condition for GS is derived. Furthermore, the performance of GS can be improved according to the configuration of the GS velocity. Further generalization and appropriation can be acquired without a stability requirement for the chaotic system's linear part. The Lorenz system and a hyperchaotic system are taken for illustration and verification and the results of the simulation indicate that the method is effective.
This paper preseiits our experience with a completely new approach to
handwritten text recognitiori. A brief description of a new type of input devices is followed by a more detailed explanation of recognition methods used. The results achieved are discussed and ideas ror further research are suggested.
In this study, a new artificial intelligence optimization algorithm, Differential Search (DS), was proposed for Principal Component Analysis (PCA) based unsupervised change detection method for optic and SAR image data. The model firstly computes an eigenvector space using previously created k×k blocks. The change detection map is generated by clustering the feature vector as two clusters which are changed and unchanged using Differential Search Algorithm. For clustering, a cost function is used based on minimization of Euclidean distance between cluster centers and pixels. Experimental results of optic and SAR images proved that proposed approach is effective for unsupervised change detection of remote sensing image data.