The `corpipe23-corefud1.1-231206` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 (https://github.com/ufal/crac2023-corpipe). It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no _corpus id_ on input), so it can be used to predict coreference in any `mT5` language (for zero-shot evaluation, see the paper). However, note that the empty nodes must be present already on input, they are not predicted (the same settings as in the CRAC23 shared task).
The `corpipe23-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 <https://github.com/ufal/crac2023-corpipe>. It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language. However, the model expects empty nodes to be already present on input, predicted by the https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/.
This model was present in the CorPipe 24 paper as an alternative to a single-stage approach, where the empty nodes are predicted joinly with coreference resolution (via http://hdl.handle.net/11234/1-5672), an approach circa twice as fast but of slightly worse quality.
The `corpipe24-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 24 (https://github.com/ufal/crac2024-corpipe). It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language.
This model jointly predicts also the empty nodes needed for zero coreference. The paper introducing this model also presents an alternative two-stage approach first predicting empty nodes (via https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/) and then performing coreference resolution (via http://hdl.handle.net/11234/1-5673), which is circa twice as slow but slightly better.
Corpus of texts in 12 languages. For each language, we provide one training, one development and one testing set acquired from Wikipedia articles. Moreover, each language dataset contains (substantially larger) training set collected from (general) Web texts. All sets, except for Wikipedia and Web training sets that can contain similar sentences, are disjoint. Data are segmented into sentences which are further word tokenized.
All data in the corpus contain diacritics. To strip diacritics from them, use Python script diacritization_stripping.py contained within attached stripping_diacritics.zip. This script has two modes. We generally recommend using method called uninames, which for some languages behaves better.
The code for training recurrent neural-network based model for diacritics restoration is located at https://github.com/arahusky/diacritics_restoration.
Software for corpus linguists and text/data mining enthusiasts. The CorpusExplorer combines over 45 interactive visualizations under a user-friendly interface. Routine tasks such as text acquisition, cleaning or tagging are completely automated. The simple interface supports the use in university teaching and leads users/students to fast and substantial results. The CorpusExplorer is open for many standards (XML, CSV, JSON, R, etc.) and also offers its own software development kit (SDK).
Source code available at https://github.com/notesjor/corpusexplorer2.0