Texts in 107 languages from the W2C corpus (http://hdl.handle.net/11858/00-097C-0000-0022-6133-9), first 1,000,000 tokens per language, tagged by the delexicalized tagger described in Yu et al. (2016, LREC, Portorož, Slovenia).
Changes in version 1.1:
1. Universal Dependencies tagset instead of the older and smaller Google Universal POS tagset.
2. SVM classifier trained on Universal Dependencies 1.2 instead of HamleDT 2.0.
3. Balto-Slavic languages, Germanic languages and Romance languages were tagged by classifier trained only on the respective group of languages. Other languages were tagged by a classifier trained on all available languages. The "c7" combination from version 1.0 is no longer used.
POS Tagger and Lemmatizer models for EvaLatin2020 data (https://github.com/CIRCSE/LT4HALA). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#evalatin20_models .
To use these models, you need UDPipe version at least 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
HamleDT 2.0 is a collection of 30 existing treebanks harmonized into a common annotation style, the Prague Dependencies, and further transformed into Stanford Dependencies, a treebank annotation style that became popular recently. We use the newest basic Universal Stanford Dependencies, without added language-specific subtypes.
This package provides an evaluation framework, training and test data for semi-automatic recognition of sections of historical diplomatic manuscripts. The data collection consists of 57 Latin charters issued by the Royal Chancellery of 7 different types. Documents were created in the era of John the Blind, King of Bohemia (1310–1346) and Count of Luxembourg. Manuscripts were digitized, transcribed, and typical sections of medieval charters ('corroboratio', 'datatio', 'dispositio', 'inscriptio', 'intitulatio', 'narratio', and 'publicatio') were manually tagged. Manuscripts also contain additional metadata, such as manually marked named entities and short Czech abstracts.
Recognition models are first trained using manually marked sections in training documents and the trained model can then be used for recognition of the sections in the test data. The parsing script supports methods based on Cosine Distance, TF-IDF weighting and adapted Viterbi algorithm.
Wikipedia plain text data obtained from Wikipedia dumps with WikiExtractor in February 2018.
The data come from all Wikipedias for which dumps could be downloaded at [https://dumps.wikimedia.org/]. This amounts to 297 Wikipedias, usually corresponding to individual languages and identified by their ISO codes. Several special Wikipedias are included, most notably "simple" (Simple English Wikipedia) and "incubator" (tiny hatching Wikipedias in various languages).
For a list of all the Wikipedias, see [https://meta.wikimedia.org/wiki/List_of_Wikipedias].
The script which can be used to get new version of the data is included, but note that Wikipedia limits the download speed for downloading a lot of the dumps, so it takes a few days to download all of them (but one or a few can be downloaded fast).
Also, the format of the dumps changes time to time, so the script will probably eventually stop working one day.
The WikiExtractor tool [http://medialab.di.unipi.it/wiki/Wikipedia_Extractor] used to extract text from the Wikipedia dumps is not mine, I only modified it slightly to produce plaintext outputs [https://github.com/ptakopysk/wikiextractor].
The latinpipe-evalatin24-240520 is a PhilBerta-based model for LatinPipe 2024 <https://github.com/ufal/evalatin2024-latinpipe>, performing tagging, lemmatization, and dependency parsing of Latin, based on the winning entry to the EvaLatin 2024 <https://circse.github.io/LT4HALA/2024/EvaLatin> shared task. It is released under the CC BY-NC-SA 4.0 license.
Pretrained model weights for the UDify model, and extracted BERT weights in pytorch-transformers format. Note that these weights slightly differ from those used in the paper.
Tokenizer, POS Tagger, Lemmatizer and Parser models for 123 treebanks of 69 languages of Universal Depenencies 2.10 Treebanks, created solely using UD 2.10 data (https://hdl.handle.net/11234/1-4758). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_210_models .
To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
Tokenizer, POS Tagger, Lemmatizer and Parser models for 131 treebanks of 72 languages of Universal Depenencies 2.12 Treebanks, created solely using UD 2.12 data (https://hdl.handle.net/11234/1-5150). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_212_models .
To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
Tokenizer, POS Tagger, Lemmatizer and Parser models for 90 treebanks of 60 languages of Universal Depenencies 2.4 Treebanks, created solely using UD 2.4 data (http://hdl.handle.net/11234/1-2988). The model documentation including performance can be found at http://ufal.mff.cuni.cz/udpipe/models#universal_dependencies_24_models .
To use these models, you need UDPipe binary version at least 1.2, which you can download from http://ufal.mff.cuni.cz/udpipe .
In addition to models itself, all additional data and value of hyperparameters used for training are available in the second archive, allowing reproducible training.