This study investigated whether gas exchange and the present content of antioxidant compounds can contribute to the survival of Euterpe oleracea plants in environments of frequent waterlogging. A factorial randomised, experimental design included two distinct water conditions (waterlogging and control) and five evaluation times (0, 6, 12, 18, and 24 d). Gasexchange parameters, leaf temperature, electrolyte leakage, and contents of antioxidant compounds were measured. Waterlogging did not promote significant alterations in net photosynthetic rate and transpiration, and stomatal conductance was reduced only after 18 d. Malondialdehyde and glutathione contents did not significantly change during waterlogging. Additionally, electrolyte leakage was significant only after 18 d of waterlogging. Thus, this study revealed that maintenance in gas exchange and antioxidant compounds might contribute to the survival of E. oleracea plants in environments exposed to waterlogging., T. S. Pereira, A. K. S. Lobato, G.A.R. Alves, R.N. Ferreira, O.N. Silva, A. P. Martins Filho, E.S. Pereira, L.S. Sampaio., and Obsahuje bibliografii
Intercropping is a sustainable agricultural practice used worldwide for highly efficient utilization of resources. However, short crops often grow under the shade of the canopy of tall crops in intercropping systems. Plants evolved two main strategies to deal with shade: avoidance and tolerance. Soybean (Glycine max), a legume crop, is often planted in intercropping. But little is known about a strategy that soybean may employ to deal with shade at seedling stage. Therefore, we determined morphological and physiological traits related to shade tolerance and shade avoidance in seedlings of two varieties. Generally, both varieties showed similar shade tolerance traits, such as increased specific leaf area and chlorophyll (Chl) content, and reduced photosynthetic capacity and the Chl a/b ratio. The light-limiting environment eliminated the benefits of shade tolerance traits for the carbon gain, which led to similar real-time photosynthesis and biomass in intercropping. By contrast, two varieties expressed different changes in shade avoidance traits. The variety Guixia 3 exhibited clear preference of shade avoidance that resulted in a high main stem, hypocotyl elongation, and biomass allocation towards the stem. The variety Gongxuan 1 showed those traits less. We suggested that the genetic variation occurs within soybean, thus the shade avoidance related traits might be important for variety selection for intercropping. Hence, the evaluation of performance should focus on shade avoidance in soybean genotypes in future experiments., W. Z. Gong, C. D. Jiang, Y. S. Wu, H. H. Chen, W. Y. Liu, W. Y. Yang., and Obsahuje bibliografii
Total carotenoids assessed spectrophotometrically in crude extracts may be considerably overestimated when high contents of phenolic compounds are co-extracted. In this case, the absorbance tails of phenolics extend well into the blue part of the spectrum, interfering with carotenoid estimation. Extracts of phenolic-rich organs, with a low ratio of photosynthetic to heterotrophic and/or supportive cells (for example, stems or twigs) are vulnerable to such pitfalls and may need chromatographic separation of carotenoids. and E. Levizou, Y. Petropoulou, Y. Manetas.
Due to emerging high spectral resolution, remote sensing techniques and ongoing developments to retrieve the spectrally resolved vegetation fluorescence spectrum from several scales, the light reactions of photosynthesis are receiving a boost of attention for the monitoring of the Earth's carbon balance. Sensor-retrieved vegetation fluorescence (from leaf, tower, airborne or satellite scale) originating from the excited antenna chlorophyll a molecule has become a new quantitative biophysical vegetation parameter retrievable from space using global imaging techniques. However, to retrieve the actual quantum efficiencies, and hence a true photosynthetic status of the observed vegetation, all signal distortions must be accounted for, and a high-precision true vegetation reflectance must be resolved. ESA's upcoming Fluorescence Explorer aims to deliver such novel products thanks to technological and instrumental advances, and by sophisticated approaches that will enable a deeper understanding of the mechanics of energy transfer underlying the photosynthetic process in plant canopies and ecosystems., S. Van Wittenberghe, N. Sabater, M. P. Cendrero-Mateo, C. Tenjo, A. Moncholi, L. Alonso, J. Moreno., and Obsahuje bibliografické odkazy
Environmental pollution by antibiotics poses a potential ecological risk to aquatic photosynthetic organisms. In the present study, toxic effects of erythromycin on PSI and PSII were investigated in cyanobacteria culture medium of Microcystis aeruginosa. The activity and electron transport of both photosystems were affected by erythromycin in a concentrationdependent manner. The quantum yield of PSII (YII) was reduced at 0.1 mg L-1 of erythromycin, while the quantum yield of PSI (YI) significantly decreased at concentration of 5-25 mg L-1. The decline of YII was accompanied by an increase of nonregulated energy dissipation (YNO). At 10 mg L-1 of erythromycin, YII decreased by 55%, while YNO increased by 18%. The decrease of YI induced by erythromycin was caused by donor-side limitation of PSI (YND). YND was markedly enhanced with elevated erythromycin concentration. At 10 mg L-1 of erythromycin, YI and YNA (PSI acceptor-side limitation) decreased by 8 and 82%, respectively, while YND rose by 314%. The quantum yield of cyclic electron flow increased significantly at 0.1-1 mg L-1 of erythromycin; it decreased but remained higher than that of the control at 5-25 mg L-1 of erythromycin. The contribution of cyclic electron flow to YI, and to linear electron flow rose significantly with the increasing erythromycin concentration. The maximum values of electron transport rates in PSII and PSI decreased by 71 and 24.3%, respectively, at 25 mg L-1 of erythromycin. Compared with the untreated control, the light saturation of PSII and PSI decreased significantly with increasing erythromycin concentration. We showed that concentrations of erythromycin >- 5 mg L-1 could exert acute toxicity to cyanobacteria, whereas the chronic toxicity caused by concentrations of ng or μg L-1 needs further research., C.-N. Deng, D.-Y. Zhang, X.-L. Pan., and Obsahuje bibliografii
The aim of this study was to determine the impact of increased copper contents on selected physiological processes in oneyear-old Pinus sylvestris L. needles from a former German timber storage area in Warcino Forest District, a subject to an environmental quality survey. Samples were collected from the area with the high copper content in the soil. The control area was a nearby pine tree stand showing unimpeded growth. The significant growth inhibition was found in dwarf shoots and whole needles, increased water content, and reduced dry mass were also observed. The chlorophyll content was lowered, while 20% higher electrolyte leakage was found. Chlorophyll a fluorescence indicated only higher values of the nonphotochemical quenching in P. sylvestris from the Cu-site. Significant differences were shown in the rate of gas exchange measured by changes in carbon dioxide or oxygen concentration. The intensity of photosynthesis in needles of P. sylvestris from the Cu-site measured by CO2 uptake was considerably higher than that of oxygen production. The rate of respiration in the needles from the Cu-site measured by the amount of released CO2 was higher only by 15%, while according to O2 consumed, the rate increased by 30% in relation to the control. Our results suggest that the copper accumulation in P. sylvestris needles affected the morphology and physiology of the studied organs., K. Możdżeń, T. Wanic, G. Rut, T. Łaciak, A. Rzepka., and Obsahuje bibliografii
We summarize the contemporary understanding of the effects of metal stress on various photosynthetic processes in photoautotrophic organisms and of the defence strategies employed by these organisms to avoid such stress. Cadmium is in the centre of interest of this review, as a non-essential element and important environmental pollutant, but Al, Pb, Hg, As, Cu, and Zn are also considered. Toxic metal ions pollute the environment through anthropogenic activities and affect the quality of plant crop. They represent one of the main abiotic stress factors influencing the health of plants and, as a secondary effect, of animals including man. The review summarizes the generally accepted answers to the questions: How do the toxic metal ions enter the photosynthetic organisms? How are they accumulated in plants? Which mechanisms do plants develop to tolerate metal stress and protect themselves? and T. Kučera, H. Horáková, A. Šonská.
A trace amount of chlorophyll (Chl) a was found in addition to protochlorophyllide (PChlide) a and protochlorophylls (PChls) a in acetone extracts of etiolated cucumber cotyledons by HPLC. There was, however, no chlorophyllide (Chlide) a, which was present in extracts from illuminated cotyledons. After 10 min exposure of cotyledons to light, all PChlide a was photoreduced to Chlide a. Hence, the whole pool of PChlide seems to be photoactive. The "photoinactive" spectral form PChl(ide) F633 was identified as a mixture of monovinyl-PChls a esterified by different alcohols.
Seedling recruitment is a critical developmental stage in regeneration of plant populations under Mediterranean conditions that strongly depends on water availability. Seed mass and relative growth rate (RGR) may affect the early establishment of seedlings through different physiological processes. Here, we examined the effects of the seed mass and carbon balance on seedling growth under two water regimes in Rhamnus alaternus L. and Rhamnus ludovici-salvatoris, two Mediterranean shrubs, showing a different ability to recruit seedlings. Plant water consumption and biomass accumulation (ΔB) were measured during three periods of the growth in order to estimate water use efficiency (WUE), RGR, and its components. Additionally, net photosynthesis and leaf, stem, and root respiration were measured in plants grown in pots well watered and under progressive drought. Rhamnus alaternus showed the higher seed mass, ΔB, and plant WUE than that of R. ludovici-salvatoris in all periods and water regimes. The higher RGR of R. alaternus was observed during the first and the second period, but the reverse trend was registered during the third period as a consequence of the higher initial biomass of R. alaternus. Also, R. alaternus showed a higher specific leaf area and estimated carbon balance than that of R. ludovicisalvatoris. The observed differences in ΔB, estimated carbon balance, seed mass, and WUE between both species could explain their different distribution and ability to recruit seedlings under natural conditions., H. El Aou-Ouad, I. Florez-Sarasa, M. Ribas-Carbó, J. Flexas, H. Medrano, J. Gulías., and Obsahuje seznam literatury
Sparse-elm grassland is the remarkable landscape of Hunshandak Sandland in Inner Mongolia Autonomic Region of China. Maximum quantum efficiency (Fv/Fm) of 99 native plant species (85 grasses, 11 shrubs, and 3 trees) of different plant functional Types (PFTs) distributed in fixed sand dune, lowland, and wetland was investigated. Deep-rooted plant species (tree, shrub, and perennial grass) had higher Fv/Fm values than the shallow-rooted species (annual grasses), suggesting that soil drought is the major environmental stress. Annual C4 grasses had higher Fv/Fm values than annual C3 or CAM ones, indicating that C4 photosynthesis is more ecologically adaptive than CAM and C3 grasses. According to the habitats with annual C3 grass distribution, Fv/Fm values were in the order of fixed dune>lowland>wetland, suggesting that salt and pH value may enhance irradiance or heat stress for those distributed in pickled and watery habitats. Based on such characteristics, Ulmus pumila, Salix gordejevii, Caragana microphylla, Agriophyllum pungens, and Agropyron cristatum are recommended as ideal species for ecological restoration in degraded sand-land ecosystems. and Yong-Geng Li ... [et al.].