High irradiance promotes decreases in the quantum yield in plants, which reduce the photosynthetic rate. The excess of light in combination with water deficit can intensify the response of plants to stress, especially in species susceptible to those factors. The aim of the present study was to characterize the photosynthetic activity of young jatobá-do-cerrado (Hymenaea stigonocarpa Mart. ex Hayne) trees under different irradiance conditions, both alone and/or in combination with water deficit. Four irradiances [45, 230, 510, and 1,700 μmol(photon) m-2 s-1] and two levels of water in soil (90% and 50% of field capacity) were used. Gas exchange, water potential, and chlorophyll a fluorescence were measured. The highest rates of photosynthesis were observed under irradiances of 230 and 510 μmol(photon) m-2 s-1. Irradiance of 1,700 μmol(photon) m-2 s-1 led to the photoinhibition of photosynthesis, as indicated by a reduced maximum quantum yield of PSII, effective quantum yield ratio, and electron transport rate, as well as higher nonphotochemical quenching. The most stressful to young H. stigonocarpa plants was high irradiance, while water deficit did not intensify the response to light stress., A. C. Costa, S. L. Rezende-Silva, C. A. Megguer, L. M. F. Moura, M. Rosa, A. A. Silva., and Obsahuje bibliografii
Water availability is the main factor limiting crop growth and productivity in dry regions. This study was carried out in order to determine the effect of spraying methanol solution on the photosynthetic characteristics of bean plants. The main aim of our experiment was to improve plant performance under stress caused by water shortage. Two factors were involved: water-deficit stress, such as severe stress (25% of field capacity), mild stress (75% of field capacity), and no stress (100% of field capacity), and application of methanol solution spray at four concentrations: control (without spraying), 10, 20, and 30%. Methanol was applied three times at different growth stages (seedling, flowering, and podding stage) in 10-d intervals. The treatment with 20% methanol at the seedling stage resulted in increased net photosynthesis (P N), intercellular CO2 concentration (C i), and decreased transpiration rate (E) under no stress and mild stress conditions. Under severe stress, 10 and 20%-methanol treatments resulted in increased C i, maximal quantum yield of PSII photochemistry, and decreased E. At the flowering stage, methanol treatments resulted in decreased E and increased C i under mild and severe stress. At the podding stage, 10 and 20%-methanol treatments resulted in increased P N, C i, and total chlorophyll content under mild stress. In conclusion, we suggested that foliar application of methanol had a positive role in enhancing photosynthetic performance., N. Armand, H. Amiri, A. Ismaili., and Obsahuje seznam literatury
a1_We investigated the light reactions, CO2 assimilation, but also the chloroplast ultrastructure in the upper three functional leaves (flag, 2nd, and 3rd leaves) of the Chinese super-high-yield hybrid rice (Oryza sativa L.) Liangyoupeijiu (LYPJ) with ultraviolet-B (UV-B) treatment during reproductive development. Photosynthetic parameters showed that the upper 3 functional leaves of LYPJ entered into senescence approximately 15 days after flag leaf emergence (DAE). Leaves in UV-B treatment exhibited greater efficiency in absorbing and utilizing light energy of photosystem II (PSII), characterized by higher chlorophyll (Chl) content and the whole chain electron transport rate (ETR). However, UV-B radiation reduced activities of Ca2+-ATPase and photophosphorylation. The significantly decreased activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was greatly associated with the decline in photosynthetic efficiency. The net photosynthetic rate (PN) and stomatal conductance (gs) suffered strong reductions before 25 DAE, and afterwards showed no significant difference between control and treatment. UV-B treatment delayed chloroplasts development of flag leaves. Chloroplast membranes later swelled and disintegrated, and more stromal thylakoids were parallel to each other and were arranged in neat rows, which might be responsible for better performance of the primary light reaction. It is likely that accumulation of starch and an increase in the number of lipid droplet and translucent plastoglobuli were results of an inhibition of carbohydrate transport. Our results suggest that long-term exposure to enhanced UV-B radiation was unlikely to have detrimental effects on the absorption flux of photons and the transport of electrons, but it resulted in the decrease of photophosphorylation and Rubisco activation of LYPJ., a2_The extent of the damage to the chloroplast ultrastructure was consistent with the degree of the inhibition of photosynthesis., G. H. Yu ... [et al.]., and Obsahuje bibliografii
The photosynthesis was investigated 30 d after Pb treatment in Myrica rubra seedlings. The Pb treatment resulted in significantly increased Pb concentrations in shoots. Low Pb concentration exposure (≤2 mM) reduced the net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) without affecting the intercellular CO2 concentration (Ci), chlorophyll (Chl) content, and Chl fluorescence parameters. At 10 d after severe Pb treatment (≥4 mM), PN was inhibited and accompanied by Chl damage, while at 30 d, the inhibition of PN was followed by an increase of Ci and a decrease of gs, E, Chl content, and Chl fluorescence parameters. M. rubra showed a promising prospect for use in the soil phytoremediation, when Pb concentration is low, but the remediation efficiency of M. rubra is limited if Pb exceeds 2 mM., B. He, M. Gu, X. Wang, X. He., and Obsahuje bibliografii
As a common tree species in northern China, Populus × euramericana "Neva" has an important practical value for the study of continuous cropping obstacles in poplar cultivation. Plant allelopathy is the main reason for continuous cropping obstacles, which are caused by allelochemicals, such as para-hydroxybenzoic acid (p-HB). The objective of this study was to investigate the effects of p-HB on the photosynthesis of poplar. Photosynthetic parameters of Populus × euramericana "Neva" poplar were determined in a pot culture experiment where five p-HB concentrations were used (0, 1, 2, 4, and 6 mmol L−1). Each seedling was treated with 4 L of p-HB solution every seven days, ten times in total. p-HB inhibited the photosynthesis of poplar significantly, as shown by a clear decline in the net photosynthetic rate. Our results indicated nonstomatal limitation responsible for the photosynthesis reduction., G. T. Liang, S. Y. Zhang, J. Guo, R. Yang, H. Li, X. C. Fang, G. C. Zhang., and Obsahuje bibliografii
Populus x euramericana cv. ‘Neva’ is an important tree species in northern China. In the study, we used its potted oneyear- old seedlings as experimental material and established three treatments (CK, 0.5X, and 1.0X) according to the concentrations of phenolic acids in order to examine the effects of different concentrations on the photosynthetic characteristics and growth of poplar. With increasing concentrations of phenolic acids, the net photosynthetic rate, stomatal limitation, transpiration rate, apparent quantum yield, photochemical quenching coefficient, electron transport rate, chlorophyll content, and total biomass decreased significantly. The intercellular CO2 concentration, light-compensation point, nonphotochemical quenching, malondialdehyde content, and root/shoot ratio increased significantly. Peroxidase and superoxide dismutase activities initially decreased and then increased. We concluded that phenolic acids significantly inhibited poplar’s photosynthesis and the higher phenolic acid concentration, the greater inhibition of photosynthesis occurred. This inhibition effect was mainly caused by nonstomatal factors. Phenolic acids induced noticeable photoinhibition, resulted in the irreversible damage of membrane structure, and then changed intracellular metabolic processes. To cope with phenolic acid stress, poplar seedlings increased dissipation of excess light energy and distributed relatively more biomass to underground parts within carbon allocation., D. F. Xie, G. C. Zhang, X. X. Xia, Y. Lang, S. Y. Zhang., and Obsahuje bibliografii
As a common waterfront and wet environment tree species, Salix babylonica shows a great potential for restoration of contaminated water or soil environments, such as phenol-polluted water. However, studies on such remediation effects have not been carried out yet. The objective of this study was to investigate the effects of phenols on photosynthesis of S. babylonica. Photosynthetic and chlorophyll fluorescence parameters of S. babylonica cuttings were determined in hydroponic experiment, where six phenol concentrations was used (0, 50, 100, 200, 400, and 800 mg L-1). Phenol presence inhibited photosynthesis of S. babylonica significantly, as the net photosynthetic rate (PN),
light-saturated net photosynthetic rate, apparent quantum yield, maximal quantum yield of PSII photochemistry, and effective quantum yield of PSII photochemistry declined significantly. The higher the concentration of phenol solution, the greater inhibition of photosynthesis occurred. Our data indicated that nonstomatal limitation was responsible for the reduction of PN. S. babylonica should be used to remediate phenol-contaminated water, when the concentration of phenol solution is lower than 200 mg L-1. Otherwise, the efficiency of photosynthesis of S. babylonica would decrease markedly. However, further study is needed to determine the maximum concentration of phenol that S. babylonica can tolerate to maintain normal photosynthetic activity., H. Li, G. C. Zhang, H. C. Xie, K. Li, S. Y. Zhang., and Obsahuje seznam literatury
Atmospheric CO2 concentration continues to rise and is predicted to reach approximately 700 ppm by 2100. Some predictions suggest that the dry season in West Africa could be extended with climate change. This study examined the effects of elevated CO2 concentration and water deficit on growth and photosynthesis of juvenile cacao. Light-saturated photosynthesis (Pmax), quantum efficiency, and intrinsic water-use efficiency increased significantly in response to elevated CO2, as did a range of growth and development responses (e.g. leaf area and leaf number), but the magnitude of the increase was dependent on the water treatment. Stomatal index was significantly greater in the elevated CO2 treatment; an atypical response which may be a reflection of the environment in which cacao evolved. This study shows a positive effect of elevated CO2 on juvenile cacao which may help to alleviate some of the negative impacts of water deficit stress., F. Lahive, P. Hadley, A. J. Daymond., and Obsahuje bibliografii
The objective of this study was to evaluate the significance of blue light (B) in the growth and photosynthetic capacity of cucumber. Gas exchange, chlorophyll (Chl) fluorescence kinetics, chloroplast ultrastructure, and leaf growth were investigated to explore the influence of three different light qualities of light emitting diodes (LEDs) on plant morphogenesis and the development of photosynthetic apparatus in cucumber (Cucumis sativus) leaves from emergence to full expansion under weak light [50 μmol(photon) m-2 s-1]. We found that B could significantly increase the leaf area (LA), shoot elongation, Chl a/b, net photosynthetic rate, and stomatal conductance (g s). In addition, the comparisons of maximal quantum yield of PSII photochemistry and the photosynthetic performance index between B-, W (white light)-, and R (red light)-grown leaves suggested that B was essential for the development of photosynthetic apparatus under weak light. B-grown leaves had the lowest Chl content under weak light, however, they had well-developed chloroplasts with the highest degree of stacked lamellae and the lowest starch accumulation. This could explain to a considerable extent the highest net photosynthetic rate per Chl unit. The results demonstrated that B optimized photosynthetic performance by improving the photosynthetic rate, increasing LA, and prolonging active photosynthesis duration under low irradiance. Therefore B is necessary to ensure healthy development of chloroplasts and highly efficient photosynthetic functions in cucumbers under a weak light environment. More importantly, our study also provided theoretical and technical support for the development of light environmental control technology., X. Y. Wang, X. M. Xu, J. Cui., and Obsahuje bibliografii
The purpose of the current investigation was to evaluate the influence of antimycin A (AA) as an activator of the alternative respiratory pathway (AP) on photosynthetic pigment composition and functional activity of the photosynthetic apparatus of wheat seedlings (Triticum aestivum L.) under exposure to high temperature as well as their acclimation. Our results indicated that a significant decrease (44-74%) of photosynthetic pigment contents was caused by a long-term exposure to high temperature (42°C), while the short-term exposure resulted in 20-46% decline. However, a combined effect of AA and long-term high temperature reduced the total pigment contents by 28-41%. Our results demonstrated that the reduction of the chlorophyll a/b ratio was less significant under the combined effect of AA and high temperature than that under the stressful condition without AA. We observed that short-term and long-term high temperature modified PSII functionality of the first leaves in wheat seedlings, which was manifested by the low maximal quantum yield of PSII photochemistry, maximum fluorescence yield in the dark-adapted state, and by high minimum fluorescence yield in the dark-adapted state. The quantum yield of PSII photochemistry decreased rapidly by 16-24% under the combination of AA and high temperature. Overall, these results suggest that the activation of the alternative pathway, induced by AA, contributed to the stabilization of the photosynthetic apparatus in wheat seedlings under high temperature., A. Batjuka, N. Škute, A. Petjukevičs., and Obsahuje bibliografii