Various physiological characteristics of Cj and C4 plants (14 species) grown along a salinity gradient were studied. The majority of plants occupying salt-marshes were succulent chenopods, mainly C4 annuals. The ash content of assimilating organs of plants was higher and osmotic potential lower in species grown under increasing soil salinity. The plants of the NADP-ME group accumulated more K than Na. Large amounts of Na"^ and CT characterized the NAD-ME plants and perennial C3 plants from sites with high soil salinity, Net photosynthetic rate (P^) and chlorophyll content were decreased in species grown under high salinity. Dark respiration was depressed by salinity to a lesser extent than P^.
An experiment was conducted to study the effect of NaCl (electric conductivity of 0, 4, 8, 12, and 16 dS m-1) on growth, gas exchange parameters, water status, membrane injury, chlorophyll stability index and oxidative defense mechanisms in two cultivars (Gola and Umran) of Indian jujube (Ziziphus mauritiana). Results showed that the dry mass and leaf area reduced linearly with increasing levels of salinity. Net photosynthetic rate (PN), transpiration (E), and stomatal conductance (gs) were comparatively lower in Umran which further declined with salinity. Leaf relative water content, chlorophyll (Chl) stability and membrane stability also decreased significantly under salt stress, with higher magnitude in Umran. Superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) activities were higher in Gola whereas hydrogen peroxide (H2O2) accumulation and lipid peroxidation (MDA content) were higher in control as well as salttreated plants of Umran. The Na+ content was higher in the roots of Gola and in the leaves of Umran, resulting in high K+/Na+ ratio in Gola leaves. Thus it is suggested that salt tolerance mechanism is more efficiently operative in cultivar Gola owing to better management of growth, physiological attributes, antioxidative defense mechanism, and restricted translocation of Na+ from root to leaves along with larger accumulation of K+ in its leaves., R. Agrawal ... [et al.]., and Obsahuje bibliografii
Fluorescence spectroscopy at 77 K showed that the application of glucose lead to the depletion of phycobilisomes (PBS) and photosystems (PS) 2 and 1, and that PS2 was more sensitive to glucose than PS1. The application of sodium thiosulfate, an effective scavenger of reactive oxygen intermediates, counteracted the effects of glucose. Sodium thiosulfate effectively protected photosynthetic apparatus, PS2, PS1, and PBS against glucose-induced depletion. Sodium thiosulfate showed strong capability to inhibit the disappearance of chlorophyll induced by glucose. At a relatively low concentration of glucose, the application of sodium thiosulfate can even be helpful for the assembly of photosynthetic apparatus. Hence the reactive oxygen species might be involved in the depletion of the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6803 cells grown in the presence of glucose. and Zeneng Wang ... [et al.].
Seedlings of Erythrina variegata Lam. exposed to flooding for 10 d showed significant reduction in height, growth rates (leaf area in plant, leaf area index, relative growth rate, and specific leaf mass), biomass, chlorophyli (Chl) and carotenoid contents, and thylakoid membrane organization. Application of triacontanol partially compensated these effects and promoted height, biomass and Chl content. Starch and sugar contents were significantly higher in leaves of flooded seedlings.
Impact of UV-A and UV-B radiation on pattern of pigments of the Antarctic macroalga Leptosomia simplex L. was studied during the Polarstern cruise (ANT XII/2) 1994/95 under controlled laboratory conditions. An 8 h exposure to UV-A of 17.6 W m-2 led usually to an increase of carotenoid contents, but to a decrease in contents of chlorophyllide (Chlide) a and chlorophyll (Chl) a. UV-B irradiation (300-320 nm) caused a decrease in contents of Chlide a, lutein, and zeaxanthin, but an increase in contents of Chl a and carotenes. Enhancement of carotenoid contents was attributed to a protection of the photosynthetic apparatus. UV effects on the 15N-ammonium uptake were correlated with the changes in pigment contents.
The grapevine (Vitis vinifera L. cv. Riesling) plants subjected to water deficit were studied for changes in relative water content (RWC), leaf dry mass, contents of chlorophyll (Chl), total leaf proteins, free amino acids, and proline, and activities of ribulose-1,5-bisphosphate carboxylase (RuBPC), nitrate reductase (NR), and protease. In water-stressed plants RWC, leaf dry matter, Chl content, net photosynthetic rate (PN), and RuBPC and NR activities were significantly decreased. The total leaf protein content also declined with increase in the accumulation of free amino acids. Concurrently, the protease activity in the tissues was also increased. A significant two-fold increase in proline content was recorded. and M. Bertaminni ... [et al.].
Effect of three Zn2+ concentrations, i.e. 0.075 (cl), 7.50 (c2) and 37.5 (c3) jiM, on rice seedlings was studied at three stages, i.e. 1, 14 and 21 d after transplantation. Typical deficiency symptoms were observed in both solution and sand cultures of cl and c2, but the effects were more pronounced in the solution culture. The c3 concentration was toxic. There was marked reduction in growth, chlorophyll (Chl) contents (particularly Chl b), Hill reaction activity, photophosphorylation rate (particularly non-cyclic photophosphorylation), thylakoid phosphorylation, and i'‘C02-fixation at the cl concentration. However, a similar reduction was also observed in thylakoid phosphorylation at the c3 concentration. Hence the optimum zinc concentration in the nutrient medium lied between c2 and c3 Zn2+. By regression the theoretical optimum Zn concentration was calculated as 19.20 pM (1.28 mg kg'i) Zn2+. Partitioning of ^'^C-photosynthates indicated reduced allocation to sugar and starch fractions and increased fřee amino acids concentration at the cl concentration and vice-versa at c2 and c3.
Maize plant inbred lines, one Al-sensitive (B-73) and two Al-tolerant (F-2 and L-2039), were grown hydroponically in the presence of 200 µM Al. After 13 d of growth, root and shoot lengths, photosystem 2 (PS2) activity, chlorophyll (Chl) content, 5-aminolevulinic acid (5-ALA) synthesis rate, chlorophyllase (Chlase) activity, and N, Mg, Fe, and Mn contents in leaves were determined. PS2 activity and Chl content were most severely affected by Al in B-73, but F-2 was almost unaffected. This was in accordance with Al-accumulation in the plants. The observed changes in B-73 coincided with 5-ALA synthesis inhibition, Chlase activation, and leaf deprivation of Fe and Mg. In Al-treated L-2039 plants, the leaf Mg and Mn contents were decreased. Also, an excessive Chlase activation was found in Al-treated L-2039, without a substantial Chl loss. This may indicate the activation of different enzyme pools in tolerant and sensitive genotypes under low-stress conditions. and N. Mihailovic, G. Drazic, Z. Vucinic.
Two species with different resistances to alkaline pH, the glycophylic Triticum aestivum (wheat) and the halophilic Chloris virgata, were chosen as test organisms. The salt-alkaline (SA) mixed stress conditions with different buffer capacities (BC) but with the same salt molarities and pH were established by mixing neutral (NaCl, Na2SO4), and alkaline salts (NaHCO3 and Na2CO3) in various proportions. Growth, photosynthetic characteristics, and solute accumulation of the seedlings were monitored to test the validity of BC as a decisive index of alkali-stress (AS) intensity in SA mixed stress. At the same salinities and pHs, the relative growth rate, the content of photosynthetic pigments, and net photosynthetic rates of wheat and C. virgata decreased, while Na+ content and Na+/K+ ratios in shoots increased with increasing BC. Hence BC was a true measure of AS intensity at mixed SA stress and the alkali-resistance mechanism of plants was easy to interpret. BC of soil solution is an important parameter for estimating the alkalization degree of salt-alkalized soil. and C.-W. Yang ... [et al.].
The effects of 0, 2.5, 5.0, and 10.0 mg(Cd2+) m-3 [Cd(NO3)2×4 H2O] and 0 and 10.0 mg m-3 gibberellin on certain parameters of photosynthesis and growth in soybean (Glycine max L. cv. Pershing) plants were studied. With increasing Cd2+ concentration in the Hoagland nutrient solution, the contents of chlorophyll and CO2 compensation concentration decreased. The addition of 10 mg m-3 gibberellin reduced the negative effects of Cd2+ in shoot and root growth. With increasing of Cd2+ concentration in the culture medium, the dry matter production in both the roots and shoots decreased as shown by the decline in growth rate (PGR), net assimilation rate (NAR), and leaf area ratio. The addition of gibberellin caused a partial elimination of the Cd effects on the roots and shoots and the PGR and NAR and it increased leaf area and length of stem. and M. Ghorbanli, S. Hadad Kaveh, M. Farzami Sepehr.