Surface sterilised seeds of mungbean (Vigna radiata L. Wilczek cv. T-44) were soaked in 0, 10-8, 10-6, or 10-4 M aqueous solution of 28-homobrassinolide (HBR) for 4, 8, or 12 h. The treated seeds were grown in sandy loam soil filled in earthen pots and sampled at 30, 40, and 50 d. Net photosynthetic rate, leaf chlorophyll content, carbonic anhydrase activity (E.C. 4.2.1.1), carboxylation efficiency, stomatal conductance, and seed yield at harvest were enhanced by the HBR treatment. The best combination was the pre-sowing seed treatment with 10-6 M HBR for 8 h. and Q. Fariduddin, A. Ahmad, S. Hayat.
Net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), and leaf water potential (Ψl) of an annual pioneer C4 grass (Agriophyllum squarrosum) were compared under different simulated precipitation events in a field of Hunshandak Sandland, China. The increase of soil water content (SWC) had significant effect on these physiological traits (p<0.001). In the vegetative stage, the values of PN, E, and gs went up sharply when SWC increased at the beginning, while they went down with continuous increase of SWC. PN, E, and gs increased 1.4, 1.7, and 1.7 fold, respectively, with SWC range from 6.7 to 11.6 %. In the reproductive stage, similar trends were found, except for the climate with a higher SWC. This indicated that A. squarrosum was very sensitive to the small increment of SWC which might have a large photosynthetic potential. Ψl increased by about 8 % as the SWC changed from 6.7 to 8.8 %, and then maintained a steady level when the SWC was higher than 8.8 %, while the values of PN, E, and gs kept increasing even after this SWC. This might indicate that the adjustment of Ψl response to the changes of SWC lagged that of the photosynthetic parameters. and M. Z. Liu ... [et al.].
Two cultivars (Katy and Erhuacao) of apricot (Prunus armeniaca L.) were evaluated under open-field and solar-heated greenhouse conditions in northwest China, to determine the effect of photosynthetic photon flux density (PPFD), leaf temperature, and CO2 concentration on the net photosynthetic rate (PN). In greenhouse, Katy registered 28.3 µmol m-2 s-1 for compensation irradiance and 823 µmol m-2 s-1 for saturation irradiance, which were 73 and 117 % of those required by Erhuacao, respectively. The optimum temperatures for cvs. Katy and Erhuacao were 25 and 35 °C in open-field and 22 and 30 °C in greenhouse, respectively. At optimal temperatures, PN of the field-grown Katy was 16.5 µmol m-2 s-1, 21 % less than for a greenhouse-grown apricot. Both cultivars responded positively to CO2 concentrations below the CO2 saturation concentration, whereas Katy exhibited greater PN (18 %) and higher carboxylation efficiency (91 %) than Erhuacao at optimal CO2 concentration. Both cultivars exhibited greater photosynthesis in solar-heated greenhouses than in open-field, but Katy performed better than Erhuacao under greenhouse conditions. and F. L. Wang, H. Wang, G. Wang.
The effects of shade on the gas exchange of four Hosta cultivars were determined under differing irradiances (5, 30, 50, and 100 % of full irradiance) within pots. Irradiance saturation ranged between 400-800 μmol m-2 s-1 among the four cultivars, of which H. sieboldiana cv. Elegans and H. plantagenea cv. Aphrodite exerted the lowest saturation and compensation irradiances. The maximal photosynthetic rate (Pmax) was significantly higher in shade than in full irradiance in Elegans and Aphrodite, and was at maximum in seedlings grown in 30 % of full irradiance. The best shade treatment for cvs. Antioch and Golden Edger was 50 % of full irradiance. The diurnal gas exchange patterns in four cultivars were greatly influenced by the irradiance. Single-peak patterns of net photosynthetic rate (PN) and stomatal conductance (gs) were observed under 5 and 30 % full irradiance for all the cultivars while Elegans and Aphrodite suffered from midday depression in 50 % of full irradiance. Under open sky, all four cultivars showed two-peak patters in their diurnal gas exchange, but the midday depression was less in Antioch and Golden Edger than in Elegans and Aphrodite. According to their photosynthetic responses to shade, the shade tolerance of the four cultivars was in the order: Elegans>Aphrodite>Antioch>Golden Edger. and J. Z. Zhang ... [et al.].
Saplings of the tropical trees Tibouchina pulchra (Cham.) Cogn., Caesalpinia echinata Lam., and Psidium guajava L. cv. Paluma were exposed in open-top chambers with charcoal filtered air and measurements of gas exchange and chlorophyll fluorescence were made before (t1) and after exposure to non-filtered air plus O3 (t2), simulating 6-h peaks of O3 similar to those observed in São Paulo city (SE Brazil, reaching an AOT40 of 641 nmol mol-1). After the fumigation, the net photosynthetic rate, stomatal conductance, transpiration rate, and Fv/Fm were reduced (p<0.05) for the three species. C. echinata was the most sensitive species and P. guajava cv. Paluma the most resistant. and R. M. Moraes ... [et al.].
Net photosynthetic rate (PN) was high in genotypes with 'C' genome both in the nucleus and cytoplasm. This may be attributed to the co-ordinated manner of acting of both genome sources. Leaf mass per area (LMA) and chlorophyll content increased with leaf nitrogen (N) content but did not show any correlation with PN. The factors which affected PN had the same effect on photosynthetic nitrogen use efficiency (pNUE). Thus, differential allocation of N to the various components influences plant pNUE which is not significantly affected by genome constitution. and A. Anand, K. Suresh, T. V. R. Nair.
We found differences between true leaves (TL) and phyllodes (Ph) during ontogeny of Acacia mangium plants as reflected in chlorophyll (Chl) and carotenoid contents, gas exchange, Chl fluorescence, and growth. The production of TL enhanced the relative growth rate of the A. mangium seedlings, allowing the plants to accumulate enough dry biomass for later growth, while the production of thicker Ph in the later growth stage of A. mangium could help plants to cope with higher irradiance in their natural growth conditions. and H. Yu, J.-T. Li.
The inter-and intra-specific physiological differences, e.g. rates of net photosynthesis (PN) and transpiration (E), stomatal conductance (gs), and water use efficiency (WUE), were compared between two grasses, Calamagrostis epigeios (L.) Roth. and Psammochloa villosa (Trin.) Bor., and between their leaf types in a desertification steppe in North China. The two species had a similar habitat, but differed in leaf area and rhizome depth. Leaf PN, E, and g s for P. villosa were significantly greater than those for C. epigeios in the growing season, but WUE for the former species was only 50 and 80 % of that for the latter one in dry and rainy seasons, respectively. In general, leaf PN, E, g s, and WUE for both vegetative and reproductive shoots of the two species exhibited little variations between leaf types or with leaf age, even though there were some remarkable differences between dry and rainy seasons. The mean leaf PN and E in reproductive shoots of P. villosa were significantly lower than those in its vegetative shoots in rainy season, while these differences were much smaller for those of C. epigeios. P. villosa with deeper rhizome roots has relative higher leaf PN, E, and g s, but a smaller WUE in the arid desertification steppe region.
Within each mango (Mangifera indica L.) tree there is a diversity in flowering ability among its terminál branches. Significant variations in net photosynthetic rate (Pn), transpiration rate, stomatal conductance (gj) and mesophyll efficiency (mesophyll capacity to fix CO2) were observed generally among the productive branches. However, the extent of variation was more pronounced in trees with irregular bearing habits (cv. Langra) as compared to regular bearers (cv. Romani). In generál, correlation coefficients indicated that variations in among n5 branches were mainly due to the mesophyll efficiency and g^, In regular bearing trees, the narrow range of variation in was related to a better mesophyll capacity. This in tum might result in higher carbon build-up of 05 branches which would háve helped them to flower regularly with minimum branch to branch variations.
Since 2002, Silver buffaloberry (Shepherdia argentea) has been introduced from North America in order to improve the fragile ecological environment in western China. To elucidate the
salt-resistance mechanism of S. argentea, we conducted a test with two-year-old seedlings subjected to 0, 200, 400, and 600 mM NaCl solutions for 30 d. The results showed that significant salt-induced suppression of plant fresh mass (FM) and stem height of S. argentea seedlings occurred only at the highest salinity level (600 mM). Leaf number, plant dry mass (DM), and chlorophyll (Chl) content declined markedly at both 400 and 600 mM. Leaf area (LA) and leaf water potential (Ψw) continuously declined with the increase of salinity. There was also a progressive and evident decrease in net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) with the increase of salinity and time. The correlation analysis indicated that PN was positively correlated with gs at all salinity levels while correlated with intercellular CO2 concentration (Ci) only at moderate salinity levels (<600 mM). Based on the initial slope of the PN/Ci curves, the estimated carboxylation efficiency (CE) was strongly inhibited at 600 mM. We confirm that S. argentea is highly tolerant to salinity. Moreover, our results show that at moderate salinity levels, salt-induced inhibition of photosynthesis is mainly attributed to the stomatal efficient closure predetermined by a low water potential in leaves; while at the high salinity levels, the inhibition is mainly due to the suppression of chloroplast capacity to fix CO2 caused by the serious decline in both CE and Chl contents. and J. Qin ... [et al.].