Competition plays an important role in the replacement of native species by alien plants. A greenhouse experiment was conducted to investigate whether the competition pattern of alien Robinia pseudoacacia L. and native Quercus acutissima Carr. is affected by soil sterilization. Physiological traits, such as gas-exchange parameters and chlorophyll (Chl) content, and growth traits, such as the biomass accumulation of the two species, were examined in natural soil or in soil sterilized with benomyl. The results show that native Q. acutissima inhibits the growth of R. pseudoacacia in natural soil. When the two plants coexisted and competed under sterilization treatment, R. pseudoacacia was less inhibited by Q. acutissima and the competition of R. pseudoacacia decreased the growth of Q. acutissima in terms of biomass, Chl a, Chl b, total Chl, and Chl a/b. These results suggest that soil sterilization benefits the growth of R. pseudoacacia and changes the competition pattern by the changed soil biota. Soil sterilization increased the biomass of root nodules, which ultimately benefits the growth of R. pseudoacacia and root nodule bacteria may be important in the dispersal and invasion process of nitrogen-fixing alien plants such as R. pseudoacacia., H. Chen ... [et al.]., and Obsahuje bibliografii
Using a radiogasometric method the rates of photorespiratory and respiratory decarboxylations of primary and stored photosynthates in the leaves of two groups of C3 species, differing in the ability of starch accumulation, were determined. One group included starch-accumulating (SA) species with rates of starch synthesis on the average 38 % the rate of photosynthesis [Solanum tuberosum L., Arabidopsis thaliana (L.) Heynh, Helianthus annuus L., and Plantago lanceolata L.]. The second group represented starch-deficient (SD) species with rates of starch synthesis less than 8 % the rate of photosynthesis (Secale cereale L., Triticum aestivum L., Hordeum vulgare L., and Poa trivialis L.). In SA species the rate of respiration in the dark was significantly higher than in SD species. No differences were found in the rates of photosynthesis, photorespiration, and respiration under irradiation. Thus, the degree of inhibition of respiration by irradiation was in SA species higher than in SD species. It is concluded that starch does not provide substrates for respiratory and photorespiratory decarboxylations in irradiated photosynthesizing leaves. and H. Ivanova ... [et al.].
The proportional light absorptance by photosynthetic tissue (α) is used with chlorophyll (Chl) fluorescence methods to calculate electron transport rate (ETR). Although a value of α of 0.84 is often used as a standard for calculating ETR, many succulent plant species and species with crassulacean acid metabolism (CAM) have photosynthetic tissues that vary greatly in color or are highly reflective, and could have values of α that differ from 0.84, thus affecting the calculation of ETR. We measured ETR using Chl fluorescence and α using an integrating sphere in 58 plant species to determine the importance of applying a measured value of α when calculating ETR. Values of α varied from 0.55-0.92 with a mean of 0.82 across species. Differences between ETR values calculated with measured α values ranged from 53% lower to 12% greater than ETR values calculated with a standard α value of 0.84 and were significantly different in 39 out of 58 species. While measurements of ETR using Chl fluorescence represent a rapid and effective assessment of physiological performance, the value of α needs to be considered. Measurements of α, especially on species with light-colored or reflective photosynthetic tissue, will allow more accurate determination of photosynthesis in succulent and CAM species. and J. A. Stemke, L. S. Santiago
In many plant species that remain leafless part of the year, CO2 fixation occurring in green stems represents an important carbon gain. Traditionally, a distinction has been made between stem photosynthesis and corticular photosynthesis. All stem photosynthesis is, sensu stricto, cortical, since it is carried out largely by the stem cortex. We proposed the following nomenclature: stem net photosynthesis (SNP), which includes net CO2 fixation by stems with stomata in the epidermis and net corticular CO2 fixation in suberized stems, and stem recycling photosynthesis (SRP), which defines CO2 ling in suberized stems. The proposed terms should reflect differences in anatomical and physiological traits. SNP takes place in the chlorenchyma below the epidermis with stomata, where the net CO2 uptake occurs, and it resembles leaf photosynthesis in many characteristics. SRP is found in species where the chlorenchyma is beneath a
well-developed stomata-free periderm and where reassimilation of internally respired CO2 occurs. SNP is common in plants from desert ecosystems, rates reaching up to 60% of the leaf photosynthetic rate. SRP has been demonstrated in trees from temperate forests and it offsets partially a carbon loss by respiration of stem nonphotosynthetic tissues. Reassimilation can vary between 7 and 123% of respired CO2, the latter figure implying net CO2 uptake from the atmosphere. Both types of stem photosynthesis contribute positively to the carbon economy of the species, in which they occur; they are advantageous to the plant because they allow the maintenance of physiological activity during stress, an increase of integrated water use efficiency, and they provide the carbon source used in the production of new organs., E. Ávila, A. Herrera, W. Tezara., and Obsahuje bibliografii
Differences in maximal yields of chlorophyll variable fluorescence (Fm) induced by single turnover (ST) and multiple turnover (MT) excitation are as great as 40%. Using mutants of Chlamydomonas reinhardtii we investigated potential mechanisms controlling Fm above and beyond the QA redox level. Fm was low when the QB binding site was occupied by PQ and high when the QB binding site was empty or occupied by a PSII herbicide. Furthermore, in mutants with impaired rates of plastoquinol reoxidation, Fm was reached rapidly during MT excitation. In PSII particles with no mobile PQ pool, Fm was virtually identical to that obtained in the presence of PSII herbicides. We have developed a model to account for the variations in maximal fluorescence yields based on the occupancy of the QB binding site. The model predicts that the variations in maximal fluorescence yields are caused by the capacity of secondary electron acceptors to reoxidize QA-., O. Prášil, Z. S. Kolber, P. G. Falkowski., and Obsahuje bibliografické odkazy
Drought stress causes changes in vein and stomatal density. The objectives of this study were to determine (1) if the changes in vein and stomatal density are coordinated in cotton (Gossypium hirsutum L.) and (2) how these changes affect water-use efficiency (WUE). The results showed significant positive correlations between vein density and stomatal density when cotton was grown under different degrees of drought stress. WUE was significantly positively correlated with the densities of both veins and stomata. Stomatal pore area and stomatal density on the abaxial leaf side, but not the adaxial side, were significantly correlated with WUE, stomatal conductance, leaf net photosynthetic rate, and transpiration rate. In conclusion, coordinated changes in vein and stomatal density improve the WUE of cotton under drought stress. The abaxial leaf side plays a more important role than the adaxial side in WUE and gas exchange., Z. Y. Lei, J. M. Han, X. P. Yi, W. F. Zhang, Y. L. Zhang., and Obsahuje bibliografii
Morphological, anatomical, and physiological leaf traits of Corylus avellana plants growing in different light conditions within the natural reserve "Siro Negri" (Italy) were analyzed. The results highlighted the capability of C. avellana to grow both in sun and shade conditions throughout several adaptations at leaf level. In particular, the more than 100% higher specific leaf area in shade is associated to a 44% lower palisade to spongy parenchyma thickness ratio compared with that in sun. Moreover, the chlorophyll (Chl) a to Chl b ratio decreased in response to the 97% decrease in photosynthetic photon flux density. The results highlighted the decrease in the ratio of Chl to carotenoid content, the maximum PSII photochemical efficiency, and the actual PSII photochemical efficiency (ΦPSII) associated with the increase in the ratio of photorespiration to net photosynthesis (PN) in sun. Chl a/b ratio was the most significant variable explaining PN variations in shade. In sun, PN was most influenced by the ratio between the fraction of electron transport rate (ETR) used for CO2 assimilation and ETR used for photorespiration, by ΦPSII, nitrogen content per leaf area, and by total Chl content per leaf area. The high phenotypic plasticity of C. avellana (PI = 0.33) shows its responsiveness to light variations. In particular, a greater plasticity of morphological (PIm = 0.41) than of physiological (PIp = 0.36) and anatomical traits (PIa = 0.24) attests to the shade tolerance of the species., R. Catoni, M.U. Granata, F. Sartori, L. Varone, L. Gratani., and Obsahuje bibliografii
After exposing one half of a low light-adapted kidney bean (Phaseolus vulgaris) leaf to high light, parameters of chlorophyll (Chl) a fluorescence, such as PSII operating efficiency, PSII maximum efficiency under light, and photochemical quenching, decreased in the opposite half of the same leaf, whereas the capacity of the cyanide-resistant respiratory pathway significantly increased. When one half of the low light-adapted leaf was exposed to low light, the opposite half pretreated with 1 mM salicylhydroxamic acid (SHAM, an inhibitor of the cyanide-resistant respiratory pathway) did not exhibit significant changes in the Chl fluorescence values compared with the without SHAM pretreatment. However, after exposing one half of the low light-adapted leaf to high light, the opposite half pretreated with 1 mM SHAM showed lower Chl fluorescence values than that without SHAM pretreatment. Our results indicate that partial exposure of the low light-adapted leaf to high light can impose a systemic stress on the PSII photochemistry. The enhanced capacity of the cyanide-resistant respiratory pathway may be involved in the maintenance of the photosynthetic performance in the leaf tissues experiencing high light-induced systemic stress., H.-Q. Feng, S.-Z. Tang, K. Sun, L.-Y. Jia, R.-F. Wang., and Obsahuje bibliografii
The negative effects of continuous light (CL) seen in tomato plants are often claimed to be linked to effects of offsetting the diurnal rhythm. In this study we tested whether a short-term daily temperature drop prevents the decreased photosynthetic performance seen in tomato plants grown under CL. Tomato (Lycopersicon esculentum Mill.) plantlets were grown at constant temperature of 26°C under 16-h day (16D) or 24-h day (24D) at 150 μmol m-2 s-1 PPFD. Some 24D plants were treated daily by 2 h temperature drop from 26 to 10°C (24D+DROP). Physiological disorder, such as severe leaf chlorosis, a large decrease in net photosynthetic rate, maximal quantum yield of PSII photochemistry, and the effective quantum yield of PSII photochemistry were observed in 24D, but not in 16D and 24D+DROP plants. The daily 2-h drop in temperature eliminated a negative effect of CL on photosynthesis and prevented the development of leaf chlorosis in tomato plants. This could be due to a change in carbohydrate metabolism as the short drop in temperature might allow maintenance of the diurnal rhythms., E. N. Ikkonen, T. G. Shibaeva, E. Rosenqvist, C.-O. Ottosen., and Obsahuje seznam literatury
We compared delayed fluorescence (DF) excitation spectrometry with radiocarbon (14C) technique using a monoalgal culture of Chlorella vulgaris grown under natural temperature and irradiance. This was done by monitoring the DF, in parallel to quantum efficiency (QE) and index of radiant energy utilization efficiency (Ψ) as calculated on the basis of carbon uptake measurements by radiocarbon technique. During the diurnal cycle, temperature, irradiance, and chlorophyll (Chl) contents were monitored in the algal culture that was kept in an open transparent plastic tank submerged at the surface of Lake Kinneret, Israel. The DF signal correlated with both the QE (r 2 = 0.869, p<0.01) and Ψ (r 2 = 0.977, p<0.01) during a diurnal cycle. We suggest that, besides the measurement of active Chl and phytoplankton population composition, the DF signal provides additional information on the QE and Ψ in phytoplankton population. and E. Kurzbaum, W. Eckert, Y. Z. Yacobi.