Effects of short-term exposure to different irradiances on the function of photosystem 2 (PS2) were studied for barley grown at low (LI; 50 µmol m-2 s-1) and high (HI; 1 100 µmol m-2 s-1) irradiances. HI barley revealed higher ability to down-regulate the light-harvesting within PS2 after exposure to high irradiance as compared to LI plants. This ability was estimated from the light-induced decreases of F685/F742 and E476/E436 in emission and excitation spectra of 77 K chlorophyll (Chl) a fluorescence in vivo which was 65 and 10 % for HI plants as compared to 30 and 2 % for LI plants, respectively. For LI plants this protective down-regulation of the light-harvesting of PS2 was saturated at 430 µmol m-2 s-1, and progressive PS2 photodamage was induced at higher irradiances. After exposure of LI segments to 2 200 µmol m-2 s-1 a pronounced maximum at 700 nm appeared in emission spectrum of 77 K Chl a fluorescence. Based on complementary analysis of 77 K excitation spectra measured at the emission wavelength 685 nm we suggest that this emission maximum may be attributed to the formation of aggregates of light-harvesting complexes of PS2 (LHC2) with part of PS2 core during progressive PS2 photodamage. Our results can be explained assuming different contributions of LHC2 and PS2 core to the total nonradiative dissipation of absorbed excitation energy for the LI and HI barley. and M. Čajánek ... [et al.].
a1_To determine how the use of a given rootstock can influence the functioning of the photosynthetic apparatus of the scion under salt stress, the growth, gas exchange, photosystem II (PSII) efficiency, xanthophyll cycle, and chloroplast ultrastructure of nongrafted,
self-grafted, and pumpkin-grafted (hereafter referred to as rootstock-grafted) cucumber (Cucumis sativus L.) plants were investigated at day 15 after being treated with 90 mM NaCl. The reductions in plant growth of the rootstock-grafted plants were lower than those of the nongrafted and self-grafted plants under 90 mM NaCl. The net photosynthetic rate, stomatal conductance, maximal and effective quantum yield of PSII photochemistry, photochemical quenching coefficient, and effective quantum-use efficiency of PSII in the light-adapted state of the nongrafted and self-grafted plants were significantly decreased under 90 mM NaCl. However, these reductions were alleviated when the cucumber plants were grafted onto the pumpkin (Cucurbita moschata Duch.) rootstock. The intercellular CO2 concentrations were significantly increased in the nongrafted and self-grafted plants under 90 mM NaCl, whereas it was decreased in the rootstock-grafted plants. Nonphotochemical quenching (NPQ) and the deepoxidation state of the xanthophyll cycle were significantly increased under 90 mM NaCl, particularly in the rootstockgrafted plants, suggesting the rootstock-grafted plants had higher potential to dissipate excess excitation energy and reduce the probability of photodamage to PSII. Under 90 mM NaCl, the number of grana was reduced, the thylakoids were swollen, and starch granules accumulated in all plants. However, the damage of chloroplast ultrastructure was alleviated in the rootstock-grafted plants., a2_Taken together, the use of C. moschata rootstock alleviated salt stress in cucumber plants by delaying photoinhibition, probably due to a lower incidence of both stomatal and nonstomatal factors limiting photosynthesis., Z. X. Liu ... [et al.]., and Obsahuje bibliografii