Activities of ribulose bisphosphate carboxylase/oxygenase (RuBPCO), phosphoenolpyruvate carboxylase (PEPC), and carbonic anhydrase (CA) were determined in leaves of cotton (Gossypium hirsutum L. cv. H-777) subjected to 8-d waterlogging (WL) at the vegetative stage, or to drought (D) at the reproductive stage, or to interaction of both stresses. The soil moisture of control plants was kept at field capacity. One day prior to stress various growth hormones (5 μM) were sprayed up to runoff. WL reduced RuBPCO and CA activities, while PEPC activity increased. Upon D, RuBPCO and PEPC activities were reduced while CA activity was increased. Imposition of both stresses increased activities of all three enzymes. Effect of stresses on enzyme activity was alleviated by benzylaminopurine (BAP), but indol-3-yl-acetic acid was more promoting under interactive stress. No CA activity with BAP was observed during interactive stress. and D. M. Pandey ... [et al.].
Almost four decades have passed since the new field of ecosystem simulation sprang into full force as an added tool for a sound research in an ever-advancing scientific front. The enormous advances and new discoveries that recently took place in the field of molecular biology and basic genetics added more effective tools, have strengthened and increased the efficiency of science outputs in various areas, particularly in basic biological sciences. Now, we are entering into a more promising stage in science, i.e. 'post-genomics', where both simulation modelling and molecular biology tools are integral parts of experimental research in agricultural sciences. I briefly review the history of simulation of crop/environment systems in the light of advances in molecular biology, and most importantly the essential role of experimental research in developing and constructing more meaningful and effective models and technologies. Such anticipated technologies are expected to lead into better management of natural resources in relation to crop communities in particular and plant ecosystems in general, that might enhance productivity faster. Emphasis is placed on developing new technologies to improve agricultural productivity under stressful environments and to ensure sustainable economic development. The latter is essential since available natural resources, particularly land and water, are increasingly limiting.
Oxygen deficiency is a widespread stress factor. Its consequences studied with the seedlings of Triticum aesíivum, under a special consideration of their root growth and morphology, the gas exchange and pyridine nucleotide systém, and the chlorophyll biosynthesis in shoots, are reviewed here on the basis of the general stress concept.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm', Fv', NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm', as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (PN) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4-5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic, activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios., and H. K. Lichtenthaler, C. Buschmann, M. Knapp.
Meteorological parameters inside and outside an open-top chamber (OTC) fumigation facility were recorded and the primary photosynthetic response of four tree species measured with chlorophyll (Chl) a fluorescence emission. Parameters extracted from the Chl a fluorescence transient were used to calculate photosynthetic activity of the leaves using a performance index. Measurements were made during the night throughout a single growing season. The seasonal primary photosynthetic performance in all species was significantly altered by growth in the OTCs, and the degree of response was dependent upon the species. Wind was an important effectual component of the altered environment. The average temperature was consistently 1.94±0.70 °C higher within the OTCs, whereas wind speed fluctuated substantially more between inside and outside the OTCs (0 to 8 m -1). There was a correlation between the photosynthetic performance index and wind speed in Fagus sylvatica, Fraxinus excelsior, and Prunus serotina. The response to wind was also particular to each species; the photosynthetic performance of F. sylvatica increased with wind speed (1 to 7 m s-1), decreased with F. excelsior (0 to 6.5 m s-1) and P. serotina (0 to 5.5 m s-1). Abies alba, in contrast, was almost insensitive to wind. A model was proposed and tested for the conversion of the photosynthetic performance values collected in OTCs to predict the photosynthetic performance outside OTCs. The wide variety of responses to wind and temperature of the four species conformed to linear functions that describe the relationship of the wind speed and temperature responses with the difference in photosynthetic performance between the OTC and open environments. Specific coefficients for wind and temperature were proposed. The photosynthetic response to wind of each species depends on its ecophysiological specialisation. and A. J. Clark ... [et al.].