In consideration of their origin the adaptive strategies of the evergreen species of the Mediterranean maquis were analysed. Rosmarinus officinalis L., Erica arborea L., and Erica multiflora L. had the lowest net photosynthetic rate (PN) in the favourable period [7.8±0.6 μmol(CO2) m-2s-1, mean value], the highest PN decrease (on an average 86 % of the maximum) but the highest recovery capacity (>70 % of the maximum) at the first rainfall in September. Cistus incanus L. and Arbutus unedo L. had the highest PN during the favourable period [15.5±5.2 μmol(CO2) m-2s-1, mean value], 79 % decrease during drought, and a lower recovery capacity (on an average 54 %). Quercus ilex L., Phillyrea latifolia L., and Pistacia lentiscus L. had an intermediate PN in the favourable period [9.2±1.3 μmol(CO2) m-2s-1, mean value], a lower reduction during drought (on an average 63 %), and a range from 62 % (Q. ilex and P. latifolia) to 39 % (P. lentiscus) of recovery capacity. The Mediterranean species had higher decrease in PN and stomatal conductance during drought and a higher recovery capacity than the pre-Mediterranean species. Among the pre-Mediterranean species, P. latifoliahad the best adaptation to long drought periods also by its higher leaf mass per area (LMA) which lowered leaf temperature thus decreasing transpiration rate during drought. Moreover, its leaf longevity determined a more stable leaf biomass during the year. Among the Mediteranean species, R. officinalis was the best adapted species to short drought periods by its ability to rapidly recover. Nevertheless, R. officinalis had the lowest tolerance to high temperatures by its PN dropping below half its maximum value when leaf temperature was over 33.6°C. R. officinalismay be used as a bioindicator species of global change. and L. Gratani, L. Varone.
Analysis of the contents and organization of pigments in leaves of more than 60 plant species from different natural habitats revealed that the majority of plants from extreme regions had a low pigment content. The arctic plants contained 40-60 % less chlorophyll (Chl) than the same species in the temperate zone. The desert plants had an extremely low pigment content. Owing to high amount of total carotenoids (Car), the arctic and high montane plants had the lowest ratios Chl/Car. The part of Chl belonging to light-harvesting (LH)-antenna varied less than the total amounts. The majority of investigated arctic plants had a smaller amount of Chl and larger part of it in the LH-antenna than plants of the temperate zone. The pigment apparatus of high montane plants was distinguished by very high Car content probably serving as protectant against photodamage: in their photosystems 1 and 2 there was 4-5 times more p-carotene than in the plants of other zones.
The age dependence of the photosynthetic performance, chlorophyll fluorescence and chloroplast ultrastructure of green form and Chl ft-deficient form (aurea) of tobacco Su/su mutant were compared. The most pronounced differences between the aurea and green tobacco found in young leaves diminished with leaf age. Slower accumulation of the photosynthetic pigments during the development of aurea leaves was accompanied by a slower accumulation of LHC antennae of both photosystems, particularly that of PS2, and by retention of an increase in the capacity of PS2 photochemistry, measured as Fy/FM The ratio Fv/Fm, however, increased rapidly during maturation of aurea leaves, and fmally the mature aurea leaves exhibited higher values of this ratio than the green ones. Rates of photosynthesis at saturating irradiance (Epiax) saturating CO2 concentration (/’sat) decreased with leaf age for both aurea and green tobacco, being always higher in aurea leaves than in leaves of green tobacco of comparable age. AU these characteristics indicated retarded development of aurea leaves. Also the chloroplast ultrastructure, particularly grana formation, exhibited slower development. The decrease in /Wx and with leaf age in both tobacco forms and retardation in the development of aurea leaves can explain higher value of usually found in aurea tobacco.
This article informs about an album amicorum of Pavel of Jizbice which is bound into an old edition in the holdings of the National Library of the Czech Republic in Prague and has been found recently. Th e humanistic poet Pavel of Jizbice used it at the time of his studies in Annaberg. Th e album contains fi rst of all records by his fellow-students. Latin and Greek of their records which are transliterated in the article is directly proportional to the erudition level of those days.
Th is article informs about an album amicorum of Pavel of Jizbice which is bound into an old edition in the holdings of the National Library of the Czech Republic in Prague and has been found recently. Th e humanistic poet Pavel of Jizbice used it at the time of his studies in Annaberg. Th e album contains fi rst of all records by his fellow-students. Latin and Greek of their records which are transliterated in the article is directly proportional to the erudition level of those days.
This article informs about an album amicorum of Pavel of Jizbice which is bound into an old edition in the holdings of the National Library of the Czech Republic in Prague and has been found recently. Th e humanistic poet Pavel of Jizbice used it at the time of his studies in Annaberg. Th e album contains fi rst of all records by his fellow-students. Latin and Greek of their records which are transliterated in the article is directly proportional to the erudition level of those days.
The γ-subunits of chloroplast ATP synthases are about 30 amino acids longer than the bacterial or mitochondrial homologous proteins. This additional sequence is located in the mean part of the polypeptide chain and includes in green algae and higher plants two cysteines (Cys198 and Cys204 in Chlamydomonas reinhardtii) responsible for thiol regulation. In order to investigate its functional significance, a segment ranging from Asp-D210 to Arg-226 in the γ-subunit of chloroplast ATP synthase from C. reinhardtii was deleted. This deletion mutant called T2 grows photoautotrophically, but slowly than the parental strain. The chloroplast ATP synthase complex with the mutated γ is assembled, membrane bound, and as CF0CF1 displays normal ATPase activity, but photophosphorylation is inhibited by about 20 %. This inhibition is referred to lower light-induced transmembrane proton gradient. Reduction of the proton gradient is apparently caused by a disturbed functional connection between CF1 and CF0 effecting a partially leaky ATP synthase complex.
Alkali stress is an important agricultural problem that affects plant metabolism, specifically root physiology. In this study, using two rice cultivars differing in alkali resistance, we investigated the physiological and molecular responses of rice plants to alkali stress. Compared to the alkali-sensitive cultivar (SC), the alkali-tolerant cultivar (TC) maintained higher photosynthesis and root system activity under alkali stress. Correspondingly, the Na+ content in its shoots was much lower, and the contents of mineral ions (e.g., K+, NO3-, and H2PO4-) in its roots was higher than those of the SC. These data showed that the metabolic regulation of roots might play a central role in rice alkali tolerance. Gene expression differences between the cultivars were much greater in roots than in shoots. In roots, 46.5% (20 of 43) of selected genes indicated over fivefold expression differences between cultivars under alkali stress. The TC had higher root system activity that might protect shoots from Na+ injury and maintain normal metabolic processes. During adaptation of TC to alkali stress, OsSOS1 (salt overly sensitive protein 1) may mediate Na+ exclusion from shoots or roots. Under alkali stress, SC could accumulate Na+ up to toxic concentrations due to relatively low expression of OsSOS1 in shoots. It possibly harmed chloroplasts and influenced photorespiration processes, thus reducing NH4+ production from photorespiration. Under alkali stress, TC was able to maintain normal nitrogen metabolism, which might be important for resisting alkali stress., H. Wang, X. Lin, S. Cao, Z. Wu., and Obsahuje bibliografii