Leaf area estimation is an important biometrical observation recorded for evaluating plant growth in field and pot experiments. In this study, conducted in 2009, a leaf area estimation model was developed for aromatic crop clary sage (Salvia sclarea L.), using linear measurements of leaf length (L) and maximum width (W). Leaves from four genotypes of clary sage, collected at different stages, were used to develop the model. The actual leaf area (LA) and leaf dimensions were measured with a Laser Area meter. Different combinations of prediction equations were obtained from L, W, product of LW and dry mass of leaves (DM) to create linear (y = a + bx), quadratic (y = a + bx + cx2), exponential (y = aebx), logarithmic (y = a + bLnx), and power models (y = axb) for each genotype. Data for all four genotypes were pooled and compared with earlier models by graphical procedures and statistical measures viz. Mean Square Error (MSE) and Prediction Sum of Squares (PRESS). A linear model having LW as the independent variables (y = -3.4444 + 0.729 LW) provided the most accurate estimate (R 2 = 0.99, MSE = 50.05, PRESS = 12.51) of clary sage leaf area. Validation of the regression model using the data from another experiment showed that the correlation between measured and predicted values was very high (R 2 = 0.98) with low MSE (107.74) and PRESS (26.96). and R. Kumar, S. Sharma.
The accurate and nondestructive determination of individual leaf area (LA) of plants, by using leaf length (L) and width (W) measurement or combinations of them, is important for many experimental comparisons. Here, we propose reliable and simple regressions for estimating LA across different leaf-age groups of eight common evergreen broadleaved trees in a subtropical forest in Gutianshan Natural Reserve, eastern China. During July 2007, the L, W, and LA of 2,923 leaves (202 to 476 leaves for each species) were measured for model construction and the respective measurements on 1,299 leaves were used for model validation. Mean L, W, LA and leaf shape (L:W ratio) differed significantly between current and older leaves in four out of the eight species. The coefficients of one-dimension LA models were affected by leaf age for most species while those incorporating both leaf dimensions (L and W) were independent of leaf age for all the species. Therefore, the regressions encompassing both L and W (LA = a L W + b), which were independent of leaf age and also allowed reliable LA estimations, were developed. Comparison between observed and predicted LA using these equations in another dataset, conducted for model validation, exhibited a high degree of correlation (R 2 = 0.96-0.99). Accordingly, these models can accurately estimate the LA of different age groups for the eight evergreen tree species without using instruments. and L. Zhang, L. Pan.
Two new yellow rice chlorophyll (Chl) b-less (lack) mutants VG28-1 and VG30-5 differ from the other known Chl b-less mutants with larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase small sub-unit and smaller amounts of Chl a. We investigated the altered features of Chl-protein complexes and excitation energy distribution in these two mutants, as compared with wild type (WT) rice cv. Zhonghua 11 by using native mild green gel electrophoresis and SDS-PAGE, and 77 K Chl fluorescence in the presence of Mg2+. WT rice revealed five pigment-protein bands and fourteen polypeptides in thylakoid membranes. Two Chl b-less mutants showed only CPI and CPa pigment bands, and contained no 25 and 26 kDa polypeptides, reduced amounts of the 21 kDa polypeptide, but increased quantities of 32, 33, 56, 66, and 19 kDa polypeptides. The enhanced absorption of CPI and CPa and the higher Chl fluorescence emission ratio of F685/F720 were also observed in these mutants. This suggested that the reduction or loss of the antenna LHC1 and LHC2 was compensated by an increment in core component and the capacity to harvest photon energy of photosystem (PS) 1 and PS2, as well as in the fraction of excitation energy distributed to PS2 in the two mutants. 77 K Chl fluorescence spectra of thylakoid membranes showed that the PS1 fluorescence emission was shifted from 730 nm in WT rice to 720 nm in the mutants. The regulation of Mg2+ to excitation energy distribution between the two photosystems was complicated. 10 mM Mg2+ did not affect noticeably the F685/F730 emission ratio of WT thylakoid membranes, but increased the ratio of F685/F720 in the two mutants due to a reduced emission at 685 nm as compared to that at 720 nm. and Zhu-Fang Lin ... [et al.].
Cotyledonary leaves of Cucumis sativus cv. Poinsette exhibited senescence-induced losses in chlorophyll (Chl) and protein contents within three weeks since germination. Chl and protein concentrations in cotyledonary leaves approached maximum on 6th d after germination and they declined to 50 and 41 %, respectively, by the 20th day of growth. Activities of both photosystem (PS) 2 and PS1 decreased by 33 and 31 %, respectively, on the 20th day, compared to the control 6th day. Changes in sensitivity of PS2 to inhibitors like atrazine and dibromothymoquinone and sensitivity of PS1 to KCN accompanied the changes in PS2 and PS1 activities. Hence both the acceptor side of PS2 and the donor side of PS1 are affected by senescence-induced changes in cucumber cotyledonary leaves. and J. S. S. Prakash, M. A. Baig, Prasanna Mohanty.
Winter wheat (Triticum aestivum L.) cultivars Yangmai 9 (water-logging tolerant) and Yumai 34 (water-logging sensitive) were subjected to water-logging (WL) from 7 d after anthesis to determine the responses of photosynthesis and anti-oxidative enzyme activities in flag leaf. At 15 d after treatment (DAT), net photosynthetic rate under WL was only 3.7 and 8.9 µmol(CO2) m-2 s-1 in Yumai 34 and Yangmai 9, respectively, which was much lower than in the control. Ratios of variable to maximum and variable to initial fluorescence, actual photosynthetic efficiency, and photochemical quenching were much lower, while initial fluorescence and non-photochemical quenching were much higher under WL than in control, indicating damage to photosystem 2. WL decreased activities of superoxide dismutase and catalase in both cultivars, and activity of peroxidase (POD) in Yumai 34, while POD activity in Yangmai 9 was mostly increased. The obvious decrease in the amount of post-anthesis accumulated dry matter, which was redistributed to grains, also contributed to the grain yield loss under WL. and W. Tan ... [et al.].