Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as Chl content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub during dehydration and rehydration. The net photosynthetic rate (PN), maximum photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of non-cyclic electron transport of PS2, and Chl content decreased, but non-photochemical quenching of fluorescence and carotenoid content increased in stems with the increasing of drought stress. 6 d after re-hydration, new leaves budded from stems. In the re-watered plants, the chloroplast function was restored and Chl a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in plant triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. Thus R. soongorica plants are able to sustain drought stress through leaf abscission and keep part of Chl content in stems. and D. H. Xu ... [et al.].
Gas exchanges, chlorophyll (Chl) a fluorescence and carboxylation activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and phosphoenolpyruvate carboxylase (PEPC) were determined in tomato (Lycopersicon esculentum Mill.) fruits picked at different developmental stages (immature, red-turning, mature, and over-ripe). The fruits did not show signs of CO2 fixation. However, photochemical activity was detectable and an effective electron transport was observed, the values of Chl fluorescence parameters in green fruits being similar to those determined in the leaves. The RuBPCO activity, which was similar to those recorded in the leaves at the immature stage of the fruit, decreased as the fruit ripened. PEPC activity was always higher than RuBPCO activity. and S. Carrara ... [et al.].
Different pigments often occur together and affect photosynthetic characteristics of the respective leaf portions. In this study, photosynthetic activity in variegated leaves of five cultivars of the ornamental and medicinal plant, Coleus × hybridus hort., was estimated by image analysis and point data measurements of major chlorophyll (Chl) fluorescence parameters and related to the amount of photosynthetic pigments measured with a Chl meter or spectrophotometrically in leaf extracts. Significant differences in Chl and carotenoid (Car) contents were noticed among differentially pigmented sectors of a leaf and among the cultivars. Although the higher Chl concentration was noticed in purple parts compared to green parts of the leaves, the values of minimal and maximal fluorescence yield at the dark- and light-adapted state (F0, Fm, F0', Fm', respectively) were a little lower than those in the green sectors, indicating photoprotective effects provided by anthocyanins and Car, more abundant in the red parts. The lowest Chl and Car content was detected in creamy-yellow and pink sectors and this contributed to low F0, Fm, and Fm', maximal quantum yield of PSII photochemistry, and nonphotochemical and photochemical quenching but high PSII maximum efficiency and effective quantum yield of PSII photochemistry. Both methods of Chl fluorescence analysis revealed heterogeneity in capture, transfer, and dissipation of excitation energy but Chl fluorescence imaging was more suitable in examining very narrow pigmented leaf areas., M. Borek, R. Bączek-Kwinta, M. Rapacz., and Seznam literatury
Leafless Duvalia velutina Lavranos (Apocynaceae) is an
arido-active stem succulent common in the arid region southwest of the Arabian Peninsula. This region is characterized by a short wet season with erratic rainfall and a long dry season with high temperature and high irradiance. We investigated the survival strategy of D. velutina by studying nurse association, gas exchange, and chlorophyll fluorescence. Results showed that D. velutina exhibited the strict nurse association with shade for protection against heat and high irradiance. Results also showed that D. velutina is an obligate CAM plant with ample physiotypic plasticity involving a shift to CAM-idling under prolonged drought. Chlorophyll fluorescence measurements revealed water stress-induced reduction of PSII activity occurring in concomitance with a marked rise of nonphotochemical quenching and chlorenchyma anthocyanin content. These results reflected photoprotective capacity involving nonradiative excess energy dissipation and antioxidative attributes. We concluded that the complex survival strategy of D. velutina in its natural arid habitat includes a multifaceted interplay of nurse association, physiotypic plasticity, and photoprotective mechanisms., Y. S. Masrahi, T. A. Al-Turki, O. H. Sayed., and Obsahuje seznam literatury
Cadmium (Cd) treatments caused an inhibition in the net photosynthetic rate (PN) of peanut (Arachis hypogaea) plants, due to the reduction of stomatal conductance (gs) and photosynthetic pigment contents, as well as the alteration in leaf structure. The decrease of the transpiration rate and gs might result from the Cd-induced xerophyte anatomic features of leaves (i.e. thick lamina, upper epidermis, palisade mesophyll, high palisade to spongy thickness ratio, as well as abundant and small stomata). The decline of PN was independent of the impairment in photosystem 2. and G. R. Shi, Q. S. Cai.
Water deficit is an important exogenous factor that enhances the influx of sucrose into sugarcane (Saccharum spp.) stem internodes during ripening, when photosynthetic ability in supplying sinks is essential. The aim of this study was to test the hypothesis that drought tolerance in sugarcane is associated with an effective antioxidant protection during the ripening phase that might maintain a favorable redox balance in chloroplasts and protect photosynthesis under drought conditions. Two commercial sugarcane varieties, IACSP94-2094 (tolerant) and IACSP96-2042 (sensitive), with contrasting behavior under water deficit, were subjected to water withholding during the ripening stage. Our results revealed that the tolerant variety was less affected by water deficit, maintaining photosynthesis for a longer period and showing a faster recovery after rehydration as compared to the sensitive one. As consequence, the tolerant variety faced lesser excess of light energy at PSII. The maintenance of photosynthesis under water deficit and its fast recovery after rehydration resulted in the lower leaf H2O2 concentration and favorable redox status in the drought-tolerant genotype, which was associated with stimulation of superoxide dismutase during ripening. Our results also revealed that ferric superoxide dismutase isoforms were strongly enhanced under drought conditions, playing an important role in chloroplast redox homeostasis., C. R. G. Sales, P. E. R. Marchiori, R. S. Machado, A. V. Fontenele, E. C. Machado, J. A. G. Silveira, R. V. Ribeiro., and Obsahuje seznam literatury
Insufficient attention has been paid to the physiological responses of sesame to drought and it is unclear if exogenous plant growth regulators are beneficial to drought-stressed sesame. Thus, a field study was conducted on seven Sesamum indicum genotypes affected by two levels of irrigation (60 and 80% depletions in available soil water) and by foliar-applied salicylic acid (SA; 0 and 0.6 mM). Water deficit led to depressions in net photosynthetic rate, stomatal conductance, leaf area index, chlorophyll a, b, and total chlorophyll contents, maximum quantum efficiency of PSII, and plant dry matter and seed yield, despite increases in carotenoid concentration, superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase activities. SA was found beneficial in ameliorating the depressions in all of the above characteristics, indicating that it could be applied for lessening the harmful effects of the drought stress., M. Yousefzadeh Najafabadi, P. Ehsanzadeh., and Obsahuje použitou literaturu
Syntrichia caninervis Mitt. is the dominant species in the moss crusts of the Gurbantunggut Desert, Northwestern China. We experimented with this species under controlled environmental conditions. Modulated chlorophyll (Chl) fluorescence was used to test the speed of recovery as evidenced by the time course of photosynthetic activity following remoistening. Transmission electron microscopy was used to explore the cytological characteristics of the leaf cells. Minimum and maximum fluorescence (F0 and FM) and photosynthetic yield (FV/FM) of photosystem II (PSII) recovered quickly when shoots were remoistened in the dark. This was especially the case of FV/FM; within the first minute of remoistening this reached 90% or more of the value attained after 30 min. These physiological changes were closely paralleled by cytological changes that indicated no damage to membranes or organelles. Correlation analysis showed that Chl fluorescence decreased both above and below a narrow moisture optimum. Our results underline the capability of S. caninervis to photosynthesize after remoistening. Utilizing precipitation events such as dew, fog, rain, and melting snow allows S. caninervis to survive and grow in a harsh desert environment. and J. Zhang ... [et al.].
Water and nitrogen (N) deficiency are two major constraints limiting the yield and quality of many oilseed crops worldwide. This study was designed to assess the response of Camelina sativa (L.) Crantz to the availability of N and water resources on photosynthesis and yield parameters. All the measured variables, which included plant height, root and shoot dry matter, root:shoot ratio, xylem pressure potential (XPP), yield components, photosynthetic parameters, and instantaneous water-use efficiency (WUE) were remarkably influenced by water and nitrogen supply. Net photosynthetic rate (PN) and yield components were significantly decreased more by water deficit than by N deficiency. XPP, stomatal conductance (gs), and intercellular CO2 concentration (C i) decreased substantially as the water deficit increased irrespective of the level of N application. WUE at the high N supply [100 and 150 kg(N) ha-1] dropped in a large degree as the increased water deficit due to a larger decrease in PN than transpiration rate (E). The results of this study suggest that the regulative capacity of N supply on photosynthetic and plant growth response is significantly affected by soil water status and C. sativa is more sensitive to water deficit than N supply. and X. Pan ... [et al.].
Cadmium inhibits photosynthetic capacity of plants by disturbing protein conformations, whereas phytocystatins prevent degradation of target proteins and are involved in abiotic stress tolerance. Two mustard (Brassica juncea L.) cultivars, Ro Agro 4001 and Amruta, were grown with Cd (50 µM) in order to study physiological and biochemical basis of differences in Cd tolerance. Amruta accumulated higher Cd and H2O2 concentrations in leaves than that of Ro Agro 4001. Cd significantly decreased photosynthesis and growth of plants in both cultivars by reducing a chlorophyll content, gas exchange parameters, and activity of Rubisco; the effects were more prominent in Amruta than those in Ro Agro 4001. The greater photosynthesis and growth of Ro Agro 4001 under Cd stress might be attributed to its higher phytocystatin activity together with greater ascorbate peroxidase activity, photosynthetic nitrogen-use efficiency, sulphur assimilation (ATP-sulphurylase activity and S content), and contents of cysteine and reduced glutathione compared to Amruta. In contrast, the activity of superoxide dismutase (SOD) was higher in Amruta than that of Ro Agro 4001 under control conditions, whereas the Cd treatment increased significantly the SOD activity in both cultivars with the greater increase in Ro Agro 4001. The fluorescence spectra of phytocystatin showed a lesser change in Ro Agro 4001 under Cd stress than that in Amruta suggesting higher resistance of Ro Agro 4001 to Cd. The higher phytocystatin activity under Cd stress in Ro Agro 4001 compared to Amruta enabled the plants to protect their proteins more efficiently. This resulted in a greater increase of photosynthetic capacity in Ro Agro 4001 than that of Amruta. Thus, the phytocystatin activity may be considered as a physiological parameter for augmenting photosynthesis and growth of mustard under Cd stress., T. S. Per, S. Khan, M. Asgher, B. Bano, N. A. Khan., and Obsahuje bibliografii