The effect of water stress on the gas exchange (CO2, H2O), distribution, water potential (T*), membrane permeability and chlorophyll content was studied in two maize hybrids, of the high and low drought tolerance, in the vegetative phase of growth. Diťferences in the responses to drought between both hybrids were clearly marked. After 5 d of drought the decrease in the net photosynthetic rate uptake and losses, transpiration rate (E) and increase of stomata resistance (r^ were greater in the drought-resistant hybrid than in the drought-susceptible one. On the contrary, after 10 or 15 d of drought, the decrease of and 'P in whole seedlings was greater in the susceptible hybrid than in the resistant one. Significant differences between hybrids were also observed in the accumulation of *'^C, the membrane permeability and the chlorophyll content. For all treatments the amount of carbon accumulation in roots of the resistant hybrid increased, while that of the susceptible one decreased. In the drought-resistant hybrid we observed a greater chlorophyll stability and a smaller damage of cell membranes than in the sensitive one.
The effects of the atomic ratio of N to P (N:P) on the response of Alexandrium tamarense to UV radiation (UVR) were investigated in this study. Artificial sea water of 5 different N:P ratios for indoor culture and with 3 different N:P ratios for outdoor culture were used for a period of 14 and 9 d, respectively. The short-term response of cells to UVR was analyzed using a fluorometer. Cells that acclimated to nutrient conditions at the Redfield value (16:1) showed the fastest growth rate and highest pigment concentrations in both indoor and outdoor conditions, compared to those acclimated to the non-Redfield conditions. Moreover, these physiological parameters were functions of the N:P ratio according to a two-order equation (y = a + bx + cx2, R2>0.95). The fluorescence data of indoor cultures showed that A. tamarense grown at 16:1 (N:P) exhibited the greatest ratio of repair rate/damage rate (r/k) and minimum level of UVR-induced inhibition. among those grown at all of the N:P ratios following UVR exposure. Outdoor cultures had the same patterns of fluorescence as indoor cultures, but the less UVR-induced inhibitions were detected compared the former with the latter. The following three parameters, the r/k, level of inhibition caused by the two radiation treatments following 60 min of exposure (PAR and PAB, respectively), and level of UVR-induced inhibition, were also functions of the N:P ratio according to the two-order equation (R2>0.96). Further, there was a negative correlation between
UVR-induced inhibition and the r/k ratio. In summary, the Redfield value (16:1) was the optimal nutrient stoichiometry for the protection of A. tamarense against the deleterious effects of UVR. Results were not impacted by previous light history experienced by cells., W. C. Guan, L. Li., and Obsahuje bibliografii
Sulfur (S) is an essential nutrient element required in a large quantity by mustard. S regulates photosynthesis and plant growth through improving nitrogen (N) acquisition. Mustard cultivars Alankar, Varuna, Pusa Jai Kisan, and SS2 differing in S accumulation capacity calculated as sulfate transport index (STI) were tested for ATP-sulfurylase activity, S and N accumulation, photosynthesis, and shoot dry mass (DM) at 30 and 60 d after sowing (DAS). The activity of ATP-sulfurylase, shoot N content, net photosynthetic rate (PN), leaf area, and shoot DM of the cultivars were in the order: Pusa Jai Kisan>Alankar>Varuna>SS2. ATP-sulfurylase activity was strongly and positively correlated with PN and shoot DM in all the cultivars. Hence ATP-sulfurylase activity may be used as a physiological trait for augmenting photosynthesis and shoot DM. and R. Nazar, N. A. Khan, N. A. Anjum.