A cyanobacterium containing phycobiliproteins with far-red acclimation was isolated from Pozas Rojas, Cuatro Ciénegas, México. It was named Leptolyngbya CCM 4 after phylogenetic analysis and a description of its morphological characteristics. Leptolyngbya was grown in far-red light. Sucrose-gradient analysis of the pigments revealed two different colored bands of phycobiliproteins. A band at 60% sucrose was a phycocyanin containing phycobilisome; at 35% sucrose, a new type of phycobiliprotein absorbed at 710 nm. SDS-PAGE revealed the presence of two types of core-membrane linkers. Analysis of the hydrophobic pigments extracted from the thylakoid membranes revealed Chl a, d, and f. The ratio of Chl f/a was reversibly changed from 1:12-16 under far-red light to an undetectable concentration of Chl f under white light. Cuatro Ciénegas, a place surrounded by the desert, is a new ecosystem where a cyanobacterium, which grows in farred light, was discovered., C. Gómez-Lojero, L. E. Leyva-Castillo, P. Herrera-Salgado,
J. Barrera-Rojas, E. Ríos-Castro, E. B. Gutiérrez-Cirlos., and Obsahuje bibliografické odkazy
This paper focuses on Utraquist priest Jan Gaudencius (+ c. 1455), from whose quite extensive library only a parchment Bible copied in 1418 has been preserved. From 1431, when he began to work in Litoměřice, he started using in to note down chronicle records, not only on important events, but also on the weather. Gaudencius and other users of the Bible continued this in the Western Bohemian town of Žlutice.
Two kinds of cecidomyiid galls induced by Daphnephila on Machilus thunbergii Sieb. & Zucc. leaves at various developmental stages, i.e., young, growing, and mature, were analyzed for their biochemical composition of photosynthetic pigment-protein complexes located in thylakoid membranes using the Thornber and MARS electrophoretic fractionation systems. Both kinds of galls were totally deficient in the pigment-protein complexes CP1, and A1, AB1, and AB2 through the whole period of gall formation. Immunoblotting of antibody against light-harvesting complex 2b (LHC2b) apoprotein confirmed this deficiency in gall's lifetime, which never recovered under any condition. Electron microscopy demonstrated that already at the early developmental stage the gall chloroplasts had thylakoid morphology like that in a normal leaf. and C. M. Yang ... [et al.].
The effect of Euphorbia scordifolia and Hordeum leporinum competition on leaf area development, radiant energy absorption, and dry matter production was evaluated in a field experiment. Profile measurements (0-0.3, 0.3-0.6, 0.6-0.9, and >0.9 m above ground) of absorbed photosynthetically active radiation (APAR) and leaf area index (LAI) by species were taken at four densities of E. scordifolia (0, 1, 4, and 12 plants per m2). APAR calculated for H. leporinum in mixed communities was 79, 77, and 49 % of the APAR in H. leporinum and LAI was reduced to 81, 65, and 37 %. LAI of H. leporinum was concentrated in the 0.3-0.6 m layer, while the taller E. scordifolia plants had the greatest LAI above 0.6 m. By absorbing radiant energy in the upper canopy, E. scordifolia reduced APAR penetrating to H. leporinum. Measurements of net photosynthetic and transpiration rates, leaf temperature, and stomatal conductance confirmed the importance of competition for PAR for plant growth and metabolism.
The ability of plants to increase their net CO2 assimilation rate in response to increased irradiance is due to morphological and physiological changes, which might be related to their shade tolerance and leaf ontogeny, but few studies have considered morphology and physiology. Two sympatric oak species (the shade-tolerant Q. petraea and the comparatively shade-intolerant Q. pyrenaica) were grown in hydroponic solution in low-light (LL) and high-light (HL) conditions. 5 months after leaf expansion under these conditions, half of the LL plants were transferred to high light (TLH). Transfer of Q. pyrenaica, from low- to high light led to photoinhibition and after 21 days in higher light there was little acclimation of the maximum rate of carboxylation (VCmax) or the maximum rate of electron transport (Jmax). Q. pyrenaica TLH plants showed lower stomatal conductance at all times compared to plants growing in LL. Stomatal closure was the main limitation to photosynthesis after transfer in Q. pyrenaica. The increase in evaporative demand upon TLH did not affect hydraulic conductivity of Q. pyrenaica. In contrast, the more shade-tolerant Q. petraea showed a greater degree of acclimation of gas exchange in TLH than Q. pyrenaica and two weeks after transfer gas-exchange rates were as high as in LL plants. In Q. petraea, the most important changes occurred at the level of leaf biochemistry with significant increase in VCmax that decreased the Jmax/VCmax ratio below values recorded in HL plants. However, this potential increase in photosynthesis was at least partially hamstrung by a decrease in internal conductance, which highlights the importance of internal conductance in acclimation to higher light in mature leaves. Neither oak species reached the photosynthetic rates of HL plants; however a trend towards leaf acclimation was observed in Q. petraea while the transfer was harmful to the leaves of Q. pyrenaica developed in the shade. and F. J. Cano ... [et al.].