Independent short-term effects of photosynthetic photon flux density (PPFD) of 50-400 µmol m-2 s-1, external CO2 concentration (C a) of 85-850 cm3 m-3, and vapor pressure deficit (VPD) of 0.9-2.2 kPa on net photosynthetic rate (PN), stomatal conductance (gs), leaf internal CO2 concentration (Ci), and transpiration rates (E) were investigated in three cacao genotypes. In all these genotypes, increasing PPFD from 50 to 400 µmol m-2 s-1 increased PN by about 50 %, but further increases in PPFD up to 1 500 µmol m-2 s-1 had no effect on PN. Increasing Ca significantly increased PN and Ci while gs and E decreased more strongly than in most trees that have been studied. In all genotypes, increasing VPD reduced PN, but the slight decrease in gs and the slight increase in Ci with increasing VPD were non-significant. Increasing VPD significantly increased E and this may have caused the reduction in PN. The unusually small response of gs to VPD could limit the ability of cacao to grow where VPD is high. There were no significant differences in gas exchange characteristics (gs, Ci, E) among the three cacao genotypes under any measurement conditions. and F. C. Baligar ... [et al.].
Maximum values of chlorophyll (Chl) (a + b) content, potentíal (Pp) and net (Pu) photosynthetíc rate in the populatíon of 25 species growing in the tundra of Wrangel Island are presented. Field measurements of response of Pp and P^ to irradiance were doně. Maximum Chl content in arctic plants was typically low [O.S-2.9 g kg'i(f.m.)] and rather close to tíie range characterizing extreme biomes: i.e. deserts and high mountains. By contrast, the sum of carotenoids (Car) was hi^ [1.1-2.3 g kg-i(d.m.)]. In most tundra plants the ratío Chl/Car varied firom 4 to 5. Lower values of Chl/Car were observed only in the high mountain plants of the Paniirs. The peculiarity of pigment apparatus organization in arctic species was expressed in low values of the ratío of pigment-protein complexes LHC/CPl + CP2 dut was mostly close to 1 or lower, as well as in the smáli size of photosynthetíc unit which was 100-200 molecules. Irradiance response of photosynthesis, pigments and structure characteristics indicated features usually considered typical bodi of sun and shade tolerant plants. Their high ability to adapt both to low and high irradiance at low temperature is a substantíal guarantee for 24-h photosyndiesis during polar day.
Salt stress causes extensive losses to agricultural crops, including wheat, throughout the world and has been the focus of wide research. Though, information is scarce on the potential of ancient wheat relatives in tackling this major limiting factor. Thus, six hulled tetraploid wheat genotypes (HW) were compared to a
free-threshing durum wheat genotype (FTW) under different NaCl concentrations, ranging from 0 to 150 mM, at early growth stages in a sand culture experiment. Salt stress induced significant declines in the leaf chlorophyll (Chl) a, Chl b, total Chl, and carotentoid contents; the extent of the declines was greater in FTW compared to HW. Mean leaf proline (3.6-fold) and Na+ (1.58-fold) concentrations and Na+/K+ (2.48-fold) drastically increased with 150 mM of NaCl; the magnitude of the increases was greater in HW compared to FTW. While the carotenoids concentration decreased with progressive salinity both in HW and FTW, the activities of antioxidant enzymes, i.e., catalase, ascorbate peroxidase, and peroxidase were reduced in FTW, but remained unchanged in HW. The above responses to 150 mM NaCl were associated with a significant decrease in shoot dry mass of FTW and lack of significant changes in that of HW. Findings of the present study could help pave the way for further studies on physiological and molecular mechanisms of salt tolerance in these durum wheat relatives., S. Tabatabaei, P. Ehsanzadeh., and Seznam literatury
In search for new forestation tree species for future Central European climate conditions, Mediterranean evergreen oak taxa are investigated for their summer drought- and winter frost-hardiness. Here we report on the winter performance of the photosynthetic apparatus of Quercus × hispanica Lam. and its evergreen parental species Q. suber L. under extraordinary harsh winter conditions. Both taxa showed a strong decline of photosystem II (PSII) quantum efficiency (Fv/Fm) with a concomitant increase in the deepoxidation state (DES) of the xanthophyll pigments depending on (severe) frost events during winter, and these parameters significantly correlated with minimum air temperatures during periods of chronic photoinhibition at mid-winter, but not at the onset of winter in response to the first frost nights. Fv/Fm and DES correlated with each other in both taxa throughout the winter. and V. Holland, W. Brüggemann.
Pot trial in greenhouse was conducted using cumulic cinnamon soil from North China to study the effects of zinc deficiency on CO2 exchange, chlorophyll fluorescence, the intensity of lipid peroxidation, and the activity of superoxide dismutase (SOD) in leaves of maize seedlings. Zn deficiency resulted in a reduction of net photosynthetic rate and stomatal conductance to H2O. The maximum quantum efficiency of photosystem 2 (PS2) and the PS2 activity were depressed, while the pool size of the plastoquinone molecules was not affected by Zn deficiency. The content of super oxygen anion radical (O2.-) and the intensity of lipid peroxidation as assessed by malonyldialdehyde content in Zn-deficient leaves were higher than those in Zn-sufficient leaves. The activity of SOD increased with Zn application. The adverse influence of Zn-deficiency on the light stage of photosynthesis is probably one of possible reasons for the limitation of photosynthetic capacity in maize leaves. and H. Wang, J. Y. Jin.
Thirty-day-old plants of mustard (Brassica juncea L.) were sprayed with 10-10, 10-8, or 10-6 M aqueous solution of 28-homobrassinolide (HBR). The HBR-treated plants were healthier than those treated with water and yielded more. Maximum increase over control was found in 60-d-old, 10-8 M-HBR-treated plants in fresh and dry mass per plant, carbonic anhydrase (CA, E.C. 4.2.1.1) activity, and net photosynthetic rate (PN), at harvest in number of pods per plant and seed yield per plant (the respective values were 25, 30, 34, 69, 24, and 29 %). A further increase in the concentration of HBR (10-6 M) did not make any additional impact on the growth and yield. Increased CA activity and PN were correlated with growth and seed yield. and S. Hayat ... [et al.].
Picea glehnii Masters can grow in strongly acidic volcanic ash soil (pH 3.6) in northern Japan. We compared needle longevity, photosynthetic rate, and concentrations of elements in needles, in mature trees of P. glehnii growing in volcanic ash soil and in brown forest soil (pH 5.4). P. glehnii growing in volcanic ash soil showed suppressed photosynthetic rate and growth by the deficiency in nitrogen compared with its growth in brown forest soil. However, the younger needles of P. glehnii growing in volcanic ash soil maintained a high photosynthetic rate, as a result of large amounts of remobilized nitrogen from senesced needles. Needles of P. glehnii growing in volcanic ash soil did not show deficiencies in Ca, Mg, or K. Moreover, Al was at low levels in the needles, suggesting that P. glehnii was able to avoid Al toxicity by Al exclusion. P. glehnii thus exhibits great ability to adapt to an acidic environment. and M. Kayama, F. Satoh, T. Koike.
The effects of moisture stress on leaf water potential ('ť|eaf)> photosynthetic rate (/^n) and stomatal resistance (r^) of cotton, Gossypium hirsutum L., were studied under field conditions. Sprinkler irrigation trials were conducted using the single source line technique. r^ increased and decreased as a result of moisture stress, more than in a concurrent drip irrigation experiment, r^ was only slightly affected by irradiance when the plants were subjected to moisture stress, but it decreased in response to an increase in irradiance (/) in the well irrigated plants. A linear relationship between T^ieaf and r^ and between 'ťigaf and found in both experiments at low /, whereas exponential relationship was found at high I. Even though high values of r^ were recorded under the extreme moisture stresses of both experiments, intemal CO2 concentration (cj) increased during the day, indicating that non-stomatal factors (such as mesophyll resistance) are the main factors limiting the photosynthetic process.
The effect of differing environmental conditions on competition for resources was investigated by a comparison of net photosynthetic rate (PN) and vegetative production of Indiangrass [Sorghastrum nutans (L.) Nash.] at two strip mine sites with differing reclamation histories, and a railroad prairie site where this species occurs naturally. The treatment for a competition experiment consisted of tying back all species of neighboring plants around a target plant, and measuring its PN and vegetative performance during the growing season. Environmental variables at each site were also measured during the growing season. Soil bulk density and pH were higher at the two mine sites than at the prairie site, and soil texture, nutrients, and water potential were different at each of the three sites. PN of target plants compared closely among the three sites, and were lowest for plants at the railroad prairie. The competition experiment indicated that lower canopy leaves were most affected by competition for photosynthetically active radiation (PAR) at all sites. Significant differences in PN of upper canopy leaves were found between treatment and control plants at one of the mine sites. This site had higher soil water potentials and higher soil levels of P and K than the other mine site or the railroad prairie. Target plants at the other mine site experienced a low competition for PAR, likely due to lower soil moisture availability and therefore lower aboveground productivity. The largest differences in PN and irradiances between upper and lower canopy leaves occurred in target plants with neighbors at the railroad prairie, likely due to inter-specific competition. Vegetative production of the target plants also reflected the environment at each site, but did not reflect PN differences between treatments. S. nutans is well adapted to the varying environment at these three sites, and aboveground competition for radiant energy was probably not as limiting for this C4 grass as belowground competition. and V. A. Skeel, D. J. Gibson.
4-year-old Pinus koraiensis, planted in open-top chambers at Changbai Mountain Station, received three different treatments [700 µmol(CO2) mol-1 = EC, control chamber = CC, and field = F]. Saturated net photosynthetic rate (PN) was 62 % higher in EC plants compared to CC and F plants as shown by PAR/PN response curves. Despite the increased PN, EC plants still showed decreased photosynthetic capacity when compared with CC and F plants at the same measurement CO2 concentration. EC plants had the highest stomatal conductance (gs) and ratio of intercellular to ambient CO2 concentration (Ci/Ca) compared with CC and F plants when measured at the same CO2 concentration. The Ci/Ca ratio was a sensitive indicator of stomatal behaviour, but not of photosynthesis. The responses of gs to EC did not correlate in magnitude or direction with responses of PN to EC. There was no significant difference in the number of stomata lines and stomata between EC and Ca. and Y. M. Zhou, S. J. Han.