The responses of gas exchange and chlorophyll fluorescence of field-growing Ulmus pumila seedlings to changes in simulated precipitation were studied in Hunshandak Sandland, China. Leaf water potential (Ψwp), net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were significantly increased with enhancement of precipitation from 0 to 20 mm (p<0.01), indicating stomatal limitation of U. pumila seedlings that could be avoided when soil water was abundant. However, PN changed slightly when precipitation exceeded 20 mm (p>0.05), indicating more precipitation than 20 mm had no significant effects on photosynthesis. Maximum photochemical efficiency of photosystem 2, PS 2 (Fv/Fm) increased from 0.53 to 0.78 when rainfall increased from 0 to 10 mm, and Fv/Fm maintained a steady state level when rainfall was more than 10 mm. Water use efficiency (WUE) decreased significantly (from 78-95 to 23-27 µmol mol-1) with enhancement of rainfalls. PN showed significant linear correlations with both gs and Ψwp (p<0.0001), which implied that leaf water status influenced gas exchange of U. pumila seedlings. The 20-mm precipitation (soil water content at about 15 %, v/v) might be enough for the growth of elm seedlings. When soil water content (SWC) reached 10 %, down regulation of PS2 photochemical efficiency could be avoided, but stomatal limitation to photosynthesis remained. When SWC exceeded 15 %, stomatal limitation to photosynthesis could be avoided, indicating elm seedlings might tolerate moderate drought. and Y.-G. Li ... [et al.].
Net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), and leaf water potential (Ψl) of an annual pioneer C4 grass (Agriophyllum squarrosum) were compared under different simulated precipitation events in a field of Hunshandak Sandland, China. The increase of soil water content (SWC) had significant effect on these physiological traits (p<0.001). In the vegetative stage, the values of PN, E, and gs went up sharply when SWC increased at the beginning, while they went down with continuous increase of SWC. PN, E, and gs increased 1.4, 1.7, and 1.7 fold, respectively, with SWC range from 6.7 to 11.6 %. In the reproductive stage, similar trends were found, except for the climate with a higher SWC. This indicated that A. squarrosum was very sensitive to the small increment of SWC which might have a large photosynthetic potential. Ψl increased by about 8 % as the SWC changed from 6.7 to 8.8 %, and then maintained a steady level when the SWC was higher than 8.8 %, while the values of PN, E, and gs kept increasing even after this SWC. This might indicate that the adjustment of Ψl response to the changes of SWC lagged that of the photosynthetic parameters. and M. Z. Liu ... [et al.].
Gas exchange, chlorophyll (Chl) fluorescence, and contents of some metabolites in two genotypes of jasmine (Jasminum sambac), single petal (SP) and double petal (DP) one, were analyzed during dehydration and re-hydration. Water stress significantly decreased net photosynthetic rate, stomatal conductance, and maximum photochemical efficiency (Fv/Fm) in both jasmine genotypes, but increased minimum fluorescence (F0) only in DP-jasmine. Water stress also decreased starch content, while increased contents of total soluble sugars and proline in leaves of both genotypes. SP-jasmine demonstrated higher drought tolerance as evidenced by maintaining higher gas exchange and photochemical efficiency and lower alteration of metabolites than DP-jasmine. Recovery analysis revealed that drought-induced injury in photosynthetic machinery in jasmine plants was reversible. DP-jasmine exhibited a slow recovery of drought-induced impairment in photosynthetic activity and associated metabolites, suggesting that this genotype had lower capacity to adapt to water limited condition. Higher yield stability of SP-than that of DP-jasmine under rain-fed condition finally confirmed higher drought tolerance of SP-jasmine. and H. Cai ... [et al.].
In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the Fv/Fm in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants. and I. Cechin ... [et al.].
The photosynthetic responses to salt stress were examined in a wheat (Triticum aestivum L. cv. Asakaze)-barley (Hordeum vulgare L. cv. Manas) 7H addition line having elevated salt tolerance and compared to the parental wheat genotype. For this purpose, increasing NaCl concentrations up to 300 mM were applied and followed by a 7-day recovery period. Up to moderate salt stress (200 mM NaCl), forcible stomatal closure, parallel with a reduction in the net assimilation rate (PN), was only observed in wheat, but not in the 7H addition line or barley. Since the photosynthetic electron transport processes of wheat were not affected by NaCl, the impairment in PN could largely be accounted for the salt-induced decline in stomatal conductance (gs), accompanied by depressed intercellular CO2 concentration and carboxylation efficiency. Both, PN and nonstomatal limitation factors (Lns) were practically unaffected by moderate salt stress in barley and in the 7H addition line due to the sustained gs, which might be an efficient strategy to maintain the efficient photosynthetic activity and biomass production. At 300 mM NaCl, both PN and gs decreased significantly in all the genotypes, but the changes in PN and Lns in the 7H addition line were more favourable similar to those in wheat. The downregulation of photosynthetic electron transport processes around PSII, accompanied by increases in the quantum yield of regulated energy dissipation and of the donor side limitation of PSI without damage to PSII, was observed in the addition line and barley during severe stress. Incomplete recovery of PN was observed in the 7H addition line as a result of declined PSII activity probably caused by enhanced cyclic electron flow around PSI. These results suggest that the better photosynthetic tolerance to moderate salt stress of barley can be manifested in the 7H addition line which may be a suitable candidate for improving salt tolerance of wheat., D. Szopkó, É. Darkó, I. Molnár, K. Kruppa, B. Háló, A. Vojtkó,
M. Molnár-Láng, S. Dulai., and Obsahuje bibliografii
Two cultivars (Katy and Erhuacao) of apricot (Prunus armeniaca L.) were evaluated under open-field and solar-heated greenhouse conditions in northwest China, to determine the effect of photosynthetic photon flux density (PPFD), leaf temperature, and CO2 concentration on the net photosynthetic rate (PN). In greenhouse, Katy registered 28.3 µmol m-2 s-1 for compensation irradiance and 823 µmol m-2 s-1 for saturation irradiance, which were 73 and 117 % of those required by Erhuacao, respectively. The optimum temperatures for cvs. Katy and Erhuacao were 25 and 35 °C in open-field and 22 and 30 °C in greenhouse, respectively. At optimal temperatures, PN of the field-grown Katy was 16.5 µmol m-2 s-1, 21 % less than for a greenhouse-grown apricot. Both cultivars responded positively to CO2 concentrations below the CO2 saturation concentration, whereas Katy exhibited greater PN (18 %) and higher carboxylation efficiency (91 %) than Erhuacao at optimal CO2 concentration. Both cultivars exhibited greater photosynthesis in solar-heated greenhouses than in open-field, but Katy performed better than Erhuacao under greenhouse conditions. and F. L. Wang, H. Wang, G. Wang.
Seedlings of Chrysanthemum, cultivar 'Puma Sunny', were grown under a range of shading regimes (natural full sunlight, 55, 25, and 15% of full sunlight) for 18 days. Here, we characterized effects of varying light regimes on plant morphology, photosynthesis, chlorophyll fluorescence, anatomical traits, and chloroplast ultrastructure. We showed that leaf color was yellowish-green under full sunlight. Leaf area, internode length, and petiole length of plants were the largest under 15% irradiance. Net photosynthetic rate, water-use efficiency, PSII quantum efficiency, and starch grain were reduced with decreasing irradiance from 100 to 15%. Heavy shading resulted in the partial closure of PSII reaction centers and the CO₂ assimilation was restricted. The results showed the leaves of plants were thinner under 25 and 15% irradiance with loose palisade tissue and irregularly arranged spongy mesophyll cells, while the plants grown under full sunlight showed the most compact leaf palisade parenchyma. Irradiance lesser than 25% of full sunlight reduced carbon assimilation and led to limited plant growth. Approximately 55% irradiance was suggested to be the optimal for Chrysanthemum morifolium., S. Han, S. M. Chen, A. P. Song, R. X. Liu, H. Y. Li, J. F. Jiang, F. D. Chen., and Obsahuje bibliografii
This study aimed to determine the photosynthetic performance and differences in chlorophyll fluorescence (ChlF) parameters between Eulophia dentata and its companion species Bletilla formosana and Saccharum spontaneum when subjected to different photosynthetic photon flux density (PPFDs). Leaf surfaces were then illuminated with 50, 100 (low PPFDs), 300, 500, 800 (moderate PPFDs); 1,000; 1,500; and 2,000 (high PPFDs) μmol m-2.s-1, and the ChlF parameters were measured during the whole process. Increasing nonphotochemical quenching of ChlF and decreasing potential quantum efficiency of PSII, actual quantum efficiency of PSII, and quantum efficiency ratio of PSII in dark recovery from 0-60 min were observed in all leaves. A significant and negative relationship was detected between energy-dependent quenching (qE) and photoinhibition percent in three species under specific PPFD conditions, whereas a significant and positive relationship was detected between photoinhibitory quenching (qI) and photoinhibition percent. The qE and qI can be easily measured in the field and provide useful ecological indexes for E. dentata species restoration, habitat creation, and monitoring.
The effects of shade on the gas exchange of four Hosta cultivars were determined under differing irradiances (5, 30, 50, and 100 % of full irradiance) within pots. Irradiance saturation ranged between 400-800 μmol m-2 s-1 among the four cultivars, of which H. sieboldiana cv. Elegans and H. plantagenea cv. Aphrodite exerted the lowest saturation and compensation irradiances. The maximal photosynthetic rate (Pmax) was significantly higher in shade than in full irradiance in Elegans and Aphrodite, and was at maximum in seedlings grown in 30 % of full irradiance. The best shade treatment for cvs. Antioch and Golden Edger was 50 % of full irradiance. The diurnal gas exchange patterns in four cultivars were greatly influenced by the irradiance. Single-peak patterns of net photosynthetic rate (PN) and stomatal conductance (gs) were observed under 5 and 30 % full irradiance for all the cultivars while Elegans and Aphrodite suffered from midday depression in 50 % of full irradiance. Under open sky, all four cultivars showed two-peak patters in their diurnal gas exchange, but the midday depression was less in Antioch and Golden Edger than in Elegans and Aphrodite. According to their photosynthetic responses to shade, the shade tolerance of the four cultivars was in the order: Elegans>Aphrodite>Antioch>Golden Edger. and J. Z. Zhang ... [et al.].
Peanut plants were adapted to drought. Due to parahelionastic leaf movements under water stress they decreased heat load and transpiring area, Folding of leaflets minimised damage to photosynthetic apparatus by high temperatoe. A positive correlation between transpiration rate (E) and leaf water potential indicated the dependence of the latter on E. Phosphoenolpyruvate carboxylase (PEPC) activity progressively increased with increased period of stress, whereas activities of ribulose-l,5-bisphosphate carboxylase (RuBPC) and NADP-glyceraldehyde-3- phosphate dehydrogenase (NADP-G-3-PDH) decreased gradually.