The paper describes a 3D numerical model of the spherical particle saltation. Two stages of particle saltation were distinguished - the particle free motion in water and the particle-bed collision. The particle motion consists of the translational and rotational particle motion. A stochastic method of calculation of the particle-bed collision was developed. The collision height and the contact point were defined as random variables. Impulse equations were used and the translational and angular velocity components of the moving particle immediately after the collision were expressed as functions of the velocity components just before the collision. The dimensionless coefficients of the drag force and drag torque were determined as functions of both translational and rotational Reynolds numbers. The model is in good agreement with known experimental data. Examples of calculation of the particles’ lateral dispersion and the mean absolute values of the deviation angle of the particle trajectory are presented. and Studie popisuje 3D numerický model saltačního pohybu kulovité částice, v němž jsou uvažována dvě fáze saltačního pohybu - volný pohyb částice v proudící vodě a kolise částice se dnem. Model počítá s translačním i rotačním pohybem částice. Byla vyvinuta stochastická metoda výpočtu kolise částice se dnem. Kolizní výška a kontaktní bod byly definovány jako náhodné proměnné. Byla použita soustava momentových rovnic a složky translační a rotační rychlosti pohybující se částice po kolizi byly vyjádřeny jako funkce složek rychlosti těsně před kolizí. Bezrozměrné koeficienty odporu částice a odporu rotující částice byly určeny jako funkce translačního i rotačního Reynoldsova čísla částice. Výsledky modelu jsou v dobré shodě se známými experimentálními daty. Studie presentuje příklady výpočtu příčné disperze částice a střední absolutní hodnoty deviačního úhlu trajektorie částice.
In the marine ecological system, the prime role of water management and durability of an ecosystem is being played by the vegetation patches. The vegetation patches in open channels can significantly affect the flow velocity, discharge capacity and hinder energy fluxes, which ultimately helps in controlling catastrophic floods. In this study, the numerical simulation for turbulent flow properties, i.e. velocity distribution, Reynolds stresses and Turbulent Intensities (TI) near the circular vegetation patches with progressively increasing density, were performed using the computational fluid dynamics (CFD) code ANSYS FLUENT. For examination of the turbulent flow features in the presence of circular patches with variable densities, Reynolds averaged Navier-Stokes equations, and Reynolds stress model (RSM) were employed. The numerical investigation was performed in the presence of in-line emergent and submerged patches having variable vegetation density in the downstream direction. Two of the cases were investigated with three circular patches having a clear gap to patch diameter ratio of La/D = 1 (where La is the clear spacing between the vegetation patches and D is the diameter of the circular patch), and the other two cases were analyzed with two patches having a clear gap ratio of La/D = 3. The case with a clear gap ratio (La/D = 3) showed 10.6% and 153% inflation in the magnitude of longitudinal velocity at the downstream of the sparse patch (aD = 0.8) and upstream of the dense patch (aD = 3.54), respectively (where aD is the flow blockage, in which “a” represents the patch frontal area and “D” represents the patch diameter). The velocity was reduced to 94% for emergent and 99% for submerged vegetation due to successive increase in vegetation density made by introducing a middle patch which reduced the clear gap ratio (La/D = 1). For La/D = 1, the longitudinal velocities at depth z = 15cm were increased by 319% than at depth z = 6cm at the downstream of the dense patch (aD = 3.54). Whereas it was observed to 365% higher in the case of La/D = 3. The magnitude of turbulent characteristics was observed 36% higher for submerged vegetation cases having a clear gap ratio of La/D = 1. The successive increase in the patch density reduced the Reynolds stresses, turbulent kinetic energy and turbulent intensities significantly within the gap region. The major reduction in the flow velocities and turbulent properties in the gaps provides a stable environment for aquatic ecosystems nourishment and fosters sediment deposition, and supports further vegetation growth.
Monthly evapotranspiration (ET) rates over Hungary for 2000-2008 are mapped at a spatial scale of about 1 km with the help of MODIS daytime land surface temperature as well as sunshine duration, air temperature and humidity data. Mapping is achieved by a linear transformation of MODIS daytime land surface temperature values employing the complementary relationship of evaporation. Validation of the ET rates has been performed at spatial scales spanning almost three magnitudes from a few hundred meters to about a hundred kilometers employing eddy-covariance (EC) measurements and catchment water balance closures. Typically the unbiased ET estimates are within 15 % of EC values at a monthly basis, within 7 % at an annual, and within only a few percent at a multi-year basis. The ET estimates yield an especially remarkable match (relative error of 0.2 %, R2 = 0.95) with high-tower EC measurements at a monthly basis. The spatial distribution of the ET estimates confirm earlier, complex regional hydrologic model results and observations as well as yields a perfect estimate of the country’s precipitation recycling index (the ratio of the multi-year mean ET and precipitation rates spatially aggregated for the whole country) of 89.2 % vs an observed value of 89.6 %. The CREMAP method is very simple, easy to implement, requires minimal data, calibration-free, and works accurately when conditions for the complementary relationship are met. and Pomocou údajov ročlenených podľa MODIS (moderate resolution imaging spectroradiometer), s využitím dennej povrchovej teploty, trvania slnečného svitu, teploty vzduchu a jeho vlhkosti boli zostrojené mapy mesačnej evapotranspirácie (ET) Maďarska pre roky 2000-2008 s priestorovým rozlíšením približne 1 km. Mapovanie bolo zrealizované lineárnou transformáciou MODIS dennej teploty povrchu s uvážením doplňujúceho vzťahu pre evapotranspiráciu CR, navrhnutou Bouchetom (1963). Výsledky dosiahnuté touto metódou boli verifikované v priestorovej mierke pokrývajúcej tri rády od niekoľkých stoviek metrov po stovky kilometrov, použijúc merania metódou pulzácií (eddy covariance, EC), a bilanciou vody v koncovom profile povodí. Typicky, hodnoty ET sú v medziach 15 % mesačných hodnôt EC a 7 % ročných hodnôt a len v medziach niekoľkých percent viacročných hodnôt evapotranspirácie, ktoré boli určené inými metódami. Hodnoty ET sú v dobrej zhode s výsledkami meraní ET na vysokej veži metódou EC (relatívna chyba 0.2 %, R2 = 0,95). Priestorové rozdelenia vypočítaných hodnôt ET potvrdzujú predchádzajúce výsledky modelovania regionálnymi modelmi, ako aj hodnoty indexu recyklácie zrážok krajiny (precipitation recycling index), čo je pomer mnohoročnej priemernej ET a zrážok agregovaných v krajine, s hodnotou 89,2 % vs pozorovaná hodnota 89,6 %. Metóda CREMAP je jednoduchá, ľahko implementovateľná, vyžaduje minimum vstupných hodnôt, nie je ju potrebné kalibrovať a keď sú splnené podmienky jej použiteľnosti, je aj dostatočne presná.
In order to fulfil their essential roles as the bearers of truth and the relata of logical relations, propositions must be public and shareable. That requirement has favoured Platonist and other non-mental views of them, despite the well-known problems of Platonism in general. Views that propositions are mental entities have correspondingly fallen out of favour, as they have difficulty in explaining how propositions could have shareable, objective properties. We revive a mentalist view of propositions, inspired by Artificial Intelligence work on perceptual algorithms, which shows how perception causes persistent mental entities with shareable properties that allow them to fulfil the traditional roles of (one core kind of) propositions. The clustering algorithms implemented in perception produce outputs which are (implicit) atomic propositions in different minds. Coordination of them across minds proceeds by game-theoretic processes of communication. The account does not rely on any unexplained notions such as mental content, representation, or correspondence (although those notions are applicable in philosophical analysis of the result).