"Historická budova Národního muzea Praha, od 28. října 2018; Slovenské národné múzeum, Bratislavský hrad, Bratislava, 27. apríl - 9. september 2018"--Strana [1], Název z obálky, and Název v prelimináriích: 1918 - 100 - 2018 :
Czech-Slovak parallel corpus consisting of several freely available corpora (Acquis [1], Europarl [2], Official Journal of the European Union [3] and part of OPUS corpus [4] – EMEA, EUConst, KDE4 and PHP) and downloaded website of European Commission [5]. Corpus is published in both in plaintext format and with an automatic morphological annotation.
References:
[1] http://langtech.jrc.it/JRC-Acquis.html/
[2] http://www.statmt.org/europarl/
[3] http://apertium.eu/data
[4] http://opus.lingfil.uu.se/
[5] http://ec.europa.eu/ and This work has been supported by the grant Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of the Czech Republic)
Analyses based on precipitation data may be limited by the quality of the data, the size of the available historical series and the efficiency of the adopted methodologies; these factors are especially limiting when conducting analyses at the daily scale. Thus, methodologies are sought to overcome these barriers. The objective of this work is to develop a hybrid model through the maximum overlap discrete wavelet transform (MODWT) to estimate daily rainfall in homogeneous regions of the Tocantins-Araguaia Hydrographic Region (TAHR) in the Amazon (Brazil). Data series from the Climate Prediction Center morphing (CMORPH) satellite products and rainfall data from the National Water Agency (ANA) were divided into seasonal periods (dry and rainy), which were adopted to train the model and for model forecasting. The results show that the hybrid model had a good performance when forecasting daily rainfall using both databases, indicated by the Nash–Sutcliffe efficiency coefficients (0.81–0.95), thus, the hybrid model is considered to be potentially useful for modelling daily rainfall.
We present DaMuEL, a large Multilingual Dataset for Entity Linking containing data in 53 languages. DaMuEL consists of two components: a knowledge base that contains language-agnostic information about entities, including their claims from Wikidata and named entity types (PER, ORG, LOC, EVENT, BRAND, WORK_OF_ART, MANUFACTURED); and Wikipedia texts with entity mentions linked to the knowledge base, along with language-specific text from Wikidata such as labels, aliases, and descriptions, stored separately for each language. The Wikidata QID is used as a persistent, language-agnostic identifier, enabling the combination of the knowledge base with language-specific texts and information for each entity. Wikipedia documents deliberately annotate only a single mention for every entity present; we further automatically detect all mentions of named entities linked from each document. The dataset contains 27.9M named entities in the knowledge base and 12.3G tokens from Wikipedia texts. The dataset is published under the CC BY-SA licence.