CoNLL 2017 and 2018 shared tasks:
Multilingual Parsing from Raw Text to Universal Dependencies
This package contains the test data in the form in which they ware presented
to the participating systems: raw text files and files preprocessed by UDPipe.
The metadata.json files contain lists of files to process and to output;
README files in the respective folders describe the syntax of metadata.json.
For full training, development and gold standard test data, see
Universal Dependencies 2.0 (CoNLL 2017)
Universal Dependencies 2.2 (CoNLL 2018)
See the download links at http://universaldependencies.org/.
For more information on the shared tasks, see
http://universaldependencies.org/conll17/
http://universaldependencies.org/conll18/
Contents:
conll17-ud-test-2017-05-09 ... CoNLL 2017 test data
conll18-ud-test-2018-05-06 ... CoNLL 2018 test data
conll18-ud-test-2018-05-06-for-conll17 ... CoNLL 2018 test data with metadata
and filenames modified so that it is digestible by the 2017 systems.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-2988). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3105). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3226). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3424). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3687). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Tools and scripts used to create the cross-lingual parsing models submitted to VarDial 2017 shared task (https://bitbucket.org/hy-crossNLP/vardial2017), as described in the linked paper. The trained UDPipe models themselves are published in a separate submission (https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1971).
For each source (SS, e.g. sl) and target (TT, e.g. hr) language,
you need to add the following into this directory:
- treebanks (Universal Dependencies v1.4):
SS-ud-train.conllu
TT-ud-predPoS-dev.conllu
- parallel data (OpenSubtitles from Opus):
OpenSubtitles2016.SS-TT.SS
OpenSubtitles2016.SS-TT.TT
!!! If they are originally called ...TT-SS... instead of ...SS-TT...,
you need to symlink them (or move, or copy) !!!
- target tagging model
TT.tagger.udpipe
All of these can be obtained from https://bitbucket.org/hy-crossNLP/vardial2017
You also need to have:
- Bash
- Perl 5
- Python 3
- word2vec (https://code.google.com/archive/p/word2vec/); we used rev 41 from 15th Sep 2014
- udpipe (https://github.com/ufal/udpipe); we used commit 3e65d69 from 3rd Jan 2017
- Treex (https://github.com/ufal/treex); we used commit d27ee8a from 21st Dec 2016
The most basic setup is the sl-hr one (train_sl-hr.sh):
- normalization of deprels
- 1:1 word-alignment of parallel data with Monolingual Greedy Aligner
- simple word-by-word translation of source treebank
- pre-training of target word embeddings
- simplification of morpho feats (use only Case)
- and finally, training and evaluating the parser
Both da+sv-no (train_ds-no.sh) and cs-sk (train_cs-sk.sh) add some cross-tagging, which seems to be useful only in
specific cases (see paper for details).
Moreover, cs-sk also adds more morpho features, selecting those that
seem to be very often shared in parallel data.
The whole pipeline takes tens of hours to run, and uses several GB of RAM, so make sure to use a powerful computer.
Pretrained model weights for the UDify model, and extracted BERT weights in pytorch-transformers format. Note that these weights slightly differ from those used in the paper.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008). This is the second release of UD Treebanks, Version 1.1.