Automatic segmentation, tokenization and morphological and syntactic annotations of raw texts in 45 languages, generated by UDPipe (http://ufal.mff.cuni.cz/udpipe), together with word embeddings of dimension 100 computed from lowercased texts by word2vec (https://code.google.com/archive/p/word2vec/).
For each language, automatic annotations in CoNLL-U format are provided in a separate archive. The word embeddings for all languages are distributed in one archive.
Note that the CC BY-SA-NC 4.0 license applies to the automatically generated annotations and word embeddings, not to the underlying data, which may have different license and impose additional restrictions.
Update 2018-09-03
===============
Added data in the 4 “surprise languages” from the 2017 ST: Buryat, Kurmanji, North Sami and Upper Sorbian. This has been promised before, during CoNLL-ST 2018 we gave the participants a link to this record saying the data was here. It wasn't, sorry. But now it is.
Baseline UDPipe models for CoNLL 2017 Shared Task in UD Parsing, and supplementary material.
The models require UDPipe version at least 1.1 and are evaluated using the official evaluation script.
The models are trained on a slightly different split of the official UD 2.0 CoNLL 2017 training data, so called baselinemodel split, in order to allow comparison of models even during the shared task. This baselinemodel split of UD 2.0 CoNLL 2017 training data is available for download.
Furthermore, we also provide UD 2.0 CoNLL 2017 training data with automatically predicted morphology. We utilize the baseline models on development data and perform 10-fold jack-knifing (each fold is predicted with a model trained on the rest of the folds) on the training data.
Finally, we supply all required data and hyperparameter values needed to replicate the baseline models.
Baseline UDPipe models for CoNLL 2018 Shared Task in UD Parsing, and supplementary material.
The models require UDPipe version at least 1.2 and are evaluated using the official evaluation script. The models were trained using a custom data split for treebanks where no development data is provided. Also, we trained an additional "Mixed" model, which uses 200 sentences from every training data. All information needed to replicate the model training (hyperparameters, modified train-dev split, and pre-computed word embeddings for the parser) are included in the archive.
Additionaly, we provide UD 2.2 CoNLL 2018 training data with automatically predicted morphology. We utilize the baseline models on development data and perform 10-fold jack-knifing (each fold is predicted with a model trained on the rest of the folds) on the training data.
CorefUD is a collection of previously existing datasets annotated with coreference, which we converted into a common annotation scheme. In total, CorefUD in its current version 0.1 consists of 17 datasets for 11 languages.
The datasets are enriched with automatic morphological and syntactic annotations that are fully compliant with the standards of the Universal Dependencies project. All the datasets are stored in the CoNLL-U format, with coreference- and bridging-specific information captured by attribute-value pairs located in the MISC column.
The collection is divided into a public edition and a non-public (ÚFAL-internal) edition. The publicly available edition is distributed via LINDAT-CLARIAH-CZ and contains 13 datasets for 10 languages (1 dataset for Catalan, 2 for Czech, 2 for English, 1 for French, 2 for German, 1 for Hungarian, 1 for Lithuanian, 1 for Polish, 1 for Russian, and 1 for Spanish), excluding the test data.
The non-public edition is available internally to ÚFAL members and contains additional 4 datasets for 2 languages (1 dataset for Dutch, and 3 for English), which we are not allowed to distribute due to their original license limitations. It also contains the test data portions for all datasets.
When using any of the harmonized datasets, please get acquainted with its license (placed in the same directory as the data) and cite the original data resource too.
References to original resources whose harmonized versions are contained in the public edition of CorefUD 0.1:
- Catalan-AnCora:
Recasens, M. and Martí, M. A. (2010). AnCora-CO: Coreferentially Annotated Corpora for Spanish and Catalan. Language Resources and Evaluation, 44(4):315–345
- Czech-PCEDT:
Nedoluzhko, A., Novák, M., Cinková, S., Mikulová, M., and Mírovský, J. (2016). Coreference in Prague Czech-English Dependency Treebank. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 169–176, Portorož, Slovenia. European Language Resources Association.
- Czech-PDT:
Hajič, J., Bejček, E., Hlaváčová, J., Mikulová, M., Straka, M., Štěpánek, J., and Štěpánková, B. (2020). Prague Dependency Treebank - Consolidated 1.0. In Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC 2020), pages 5208–5218, Marseille, France. European Language Resources Association.
- English-GUM:
Zeldes, A. (2017). The GUM Corpus: Creating Multilayer Resources in the Classroom. Language Resources and Evaluation, 51(3):581–612.
- English-ParCorFull:
Lapshinova-Koltunski, E., Hardmeier, C., and Krielke, P. (2018). ParCorFull: a Parallel Corpus Annotated with Full Coreference. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association.
- French-Democrat:
Landragin, F. (2016). Description, modélisation et détection automatique des chaı̂nes de référence (DEMOCRAT). Bulletin de l’Association Française pour l’Intelligence Artificielle, (92):11–15.
- German-ParCorFull:
Lapshinova-Koltunski, E., Hardmeier, C., and Krielke, P. (2018). ParCorFull: a Parallel Corpus Annotated with Full Coreference. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association
- German-PotsdamCC:
Bourgonje, P. and Stede, M. (2020). The Potsdam Commentary Corpus 2.2: Extending annotations for shallow discourse parsing. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 1061–1066, Marseille, France. European Language Resources Association.
- Hungarian-SzegedKoref:
Vincze, V., Hegedűs, K., Sliz-Nagy, A., and Farkas, R. (2018). SzegedKoref: A Hungarian Coreference Corpus. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association.
- Lithuanian-LCC:
Žitkus, V. and Butkienė, R. (2018). Coreference Annotation Scheme and Corpus for Lithuanian Language. In Fifth International Conference on Social Networks Analysis, Management and Security, SNAMS 2018, Valencia, Spain, October 15-18, 2018, pages 243–250. IEEE.
- Polish-PCC:
Ogrodniczuk, M., Glowińska, K., Kopeć, M., Savary, A., and Zawisławska, M. (2013). Polish coreference corpus. In Human Language Technology. Challenges for Computer Science and Linguistics - 6th Language and Technology Conference, LTC 2013, Poznań, Poland, December 7-9, 2013. Revised Selected Papers, volume 9561 of Lecture Notes in Computer Science, pages 215–226. Springer.
- Russian-RuCor:
Toldova, S., Roytberg, A., Ladygina, A. A., Vasilyeva, M. D., Azerkovich, I. L., Kurzukov,M., Sim, G., Gorshkov, D. V., Ivanova, A., Nedoluzhko, A., and Grishina, Y. (2014). Evaluating Anaphora and Coreference Resolution for Russian. In Komp’juternaja lingvistika i intellektual’nye tehnologii. Po materialam ezhegodnoj Mezhdunarodnoj konferencii
Dialog, pages 681–695.
- Spanish-AnCora:
Recasens, M. and Martí, M. A. (2010). AnCora-CO: Coreferentially Annotated Corpora for Spanish and Catalan. Language Resources and Evaluation, 44(4):315–345
References to original resources whose harmonized versions are contained in the ÚFAL-internal edition of CorefUD 0.1:
- Dutch-COREA:
Hendrickx, I., Bouma, G., Coppens, F., Daelemans, W., Hoste, V., Kloosterman, G., Mineur, A.-M., Van Der Vloet, J., and Verschelde, J.-L. (2008). A coreference corpus and resolution system for Dutch. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08), Marrakech, Morocco. European Language Resources Association.
- English-ARRAU:
Uryupina, O., Artstein, R., Bristot, A., Cavicchio, F., Delogu, F., Rodriguez, K. J., and Poesio, M. (2020). Annotating a broad range of anaphoric phenomena, in a variety of genres: the ARRAU Corpus. Natural Language Engineering, 26(1):95–128.
- English-OntoNotes:
Weischedel, R., Hovy, E., Marcus, M., Palmer, M., Belvin, R., Pradhan, S., Ramshaw, L., and Xue, N. (2011). Ontonotes: A large training corpus for enhanced processing. In Handbook of Natural Language Processing and Machine Translation: DARPA Global Autonomous Language Exploitation, pages 54–63, New York. Springer-Verlag.
- English-PCEDT:
Nedoluzhko, A., Novák, M., Cinková, S., Mikulová, M., and Mírovský, J. (2016). Coreference in Prague Czech-English Dependency Treebank. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pages 169–176, Portorož, Slovenia. European Language Resources Association.
CorefUD is a collection of previously existing datasets annotated with coreference, which we converted into a common annotation scheme. In total, CorefUD in its current version 0.2 consists of 17 datasets for 11 languages.
The datasets are enriched with automatic morphological and syntactic annotations that are fully compliant with the standards of the Universal Dependencies project. All the datasets are stored in the CoNLL-U format, with coreference- and bridging-specific information captured by attribute-value pairs located in the MISC column.
The collection is divided into a public edition and a non-public (ÚFAL-internal) edition. The publicly available edition is distributed via LINDAT-CLARIAH-CZ and contains 13 datasets for 10 languages (1 dataset for Catalan, 2 for Czech, 2 for English, 1 for French, 2 for German, 1 for Hungarian, 1 for Lithuanian, 1 for Polish, 1 for Russian, and 1 for Spanish), excluding the test data.
The non-public edition is available internally to ÚFAL members and contains additional 4 datasets for 2 languages (1 dataset for Dutch, and 3 for English), which we are not allowed to distribute due to their original license limitations. It also contains the test data portions for all datasets.
When using any of the harmonized datasets, please get acquainted with its license (placed in the same directory as the data) and cite the original data resource too.
Version 0.2 consists of exactly the same datasets as the version 0.1. All automatically parsed datasets were re-parsed for v0.2 using UDPipe 2 with models trained on UD 2.6. Catalan-AnCora, Spanish-AnCora and English-GUM have been updated to match the their UD 2.9 versions.
CorefUD is a collection of previously existing datasets annotated with coreference, which we converted into a common annotation scheme. In total, CorefUD in its current version 1.0 consists of 17 datasets for 11 languages. The datasets are enriched with automatic morphological and syntactic annotations that are fully compliant with the standards of the Universal Dependencies project. All the datasets are stored in the CoNLL-U format, with coreference- and bridging-specific information captured by attribute-value pairs located in the MISC column. The collection is divided into a public edition and a non-public (ÚFAL-internal) edition. The publicly available edition is distributed via LINDAT-CLARIAH-CZ and contains 13 datasets for 10 languages (1 dataset for Catalan, 2 for Czech, 2 for English, 1 for French, 2 for German, 1 for Hungarian, 1 for Lithuanian, 1 for Polish, 1 for Russian, and 1 for Spanish), excluding the test data. The non-public edition is available internally to ÚFAL members and contains additional 4 datasets for 2 languages (1 dataset for Dutch, and 3 for English), which we are not allowed to distribute due to their original license limitations. It also contains the test data portions for all datasets. When using any of the harmonized datasets, please get acquainted with its license (placed in the same directory as the data) and cite the original data resource too. Version 1.0 consists of the same corpora and languages as the previous version 0.2; however, the English GUM dataset has been updated to a newer and larger version, and in the Czech/English PCEDT dataset, the train-dev-test split has been changed to be compatible with OntoNotes. Nevertheless, the main change is in the file format (the MISC attributes have new form and interpretation).
CorefUD is a collection of previously existing datasets annotated with coreference, which we converted into a common annotation scheme. In total, CorefUD in its current version 1.1 consists of 21 datasets for 13 languages. The datasets are enriched with automatic morphological and syntactic annotations that are fully compliant with the standards of the Universal Dependencies project. All the datasets are stored in the CoNLL-U format, with coreference- and bridging-specific information captured by attribute-value pairs located in the MISC column. The collection is divided into a public edition and a non-public (ÚFAL-internal) edition. The publicly available edition is distributed via LINDAT-CLARIAH-CZ and contains 17 datasets for 12 languages (1 dataset for Catalan, 2 for Czech, 2 for English, 1 for French, 2 for German, 2 for Hungarian, 1 for Lithuanian, 2 for Norwegian, 1 for Polish, 1 for Russian, 1 for Spanish, and 1 for Turkish), excluding the test data. The non-public edition is available internally to ÚFAL members and contains additional 4 datasets for 2 languages (1 dataset for Dutch, and 3 for English), which we are not allowed to distribute due to their original license limitations. It also contains the test data portions for all datasets. When using any of the harmonized datasets, please get acquainted with its license (placed in the same directory as the data) and cite the original data resource too. Compared to the previous version 1.0, the version 1.1 comprises new languages and corpora, namely Hungarian-KorKor, Norwegian-BokmaalNARC, Norwegian-NynorskNARC, and Turkish-ITCC. In addition, the English GUM dataset has been updated to a newer and larger version, and the conversion pipelines for most datasets have been refined (a list of all changes in each dataset can be found in the corresponding README file).