CzEngVallex is a bilingual valency lexicon of corresponding Czech and English verbs. It connects 20835 aligned valency frame pairs (verb senses) which are translations of each other, aligning their arguments as well. The CzEngVallex serves as a powerful, real-text-based database of frame-to-frame and subsequently argument-to-argument pairs and can be used for example for machine translation applications. It uses the data from the Prague Czech-English Dependency Treebank project (PCEDT 2.0, http://hdl.handle.net/11858/00-097C-0000-0015-8DAF-4) and it also takes advantage of two existing valency lexicons: PDT-Vallex for Czech and EngVallex for English, using the same view of valency (based on the Functional Generative Description theory). The CzEngVallex is available in an XML format in the LINDAT/CLARIN repository, and also in a searchable form (see the “More Apps” tab) interlinked with PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F),EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2) and with examples from the PCEDT.
CzeSL-GEC is a corpus containing sentence pairs of original and corrected versions of Czech sentences collected from essays written by both non-native learners of Czech and Czech pupils with Romani background. To create this corpus, unreleased CzeSL-man corpus (http://utkl.ff.cuni.cz/learncorp/) was utilized. All sentences in the corpus are word tokenized.
We present DaMuEL, a large Multilingual Dataset for Entity Linking containing data in 53 languages. DaMuEL consists of two components: a knowledge base that contains language-agnostic information about entities, including their claims from Wikidata and named entity types (PER, ORG, LOC, EVENT, BRAND, WORK_OF_ART, MANUFACTURED); and Wikipedia texts with entity mentions linked to the knowledge base, along with language-specific text from Wikidata such as labels, aliases, and descriptions, stored separately for each language. The Wikidata QID is used as a persistent, language-agnostic identifier, enabling the combination of the knowledge base with language-specific texts and information for each entity. Wikipedia documents deliberately annotate only a single mention for every entity present; we further automatically detect all mentions of named entities linked from each document. The dataset contains 27.9M named entities in the knowledge base and 12.3G tokens from Wikipedia texts. The dataset is published under the CC BY-SA licence.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-2988). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3105). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3226). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3424). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3687). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Texts in 107 languages from the W2C corpus (http://hdl.handle.net/11858/00-097C-0000-0022-6133-9), first 1,000,000 tokens per language, tagged by the delexicalized tagger described in Yu et al. (2016, LREC, Portorož, Slovenia).
Texts in 107 languages from the W2C corpus (http://hdl.handle.net/11858/00-097C-0000-0022-6133-9), first 1,000,000 tokens per language, tagged by the delexicalized tagger described in Yu et al. (2016, LREC, Portorož, Slovenia).
Changes in version 1.1:
1. Universal Dependencies tagset instead of the older and smaller Google Universal POS tagset.
2. SVM classifier trained on Universal Dependencies 1.2 instead of HamleDT 2.0.
3. Balto-Slavic languages, Germanic languages and Romance languages were tagged by classifier trained only on the respective group of languages. Other languages were tagged by a classifier trained on all available languages. The "c7" combination from version 1.0 is no longer used.