English model for NameTag, a named entity recognition tool. The model is trained on CoNLL-2003 training data. Recognizes PER, ORG, LOC and MISC named entities. Achieves F-measure 84.73 on CoNLL-2003 test data.
English models for MorphoDiTa, providing morphological analysis, morphological generation and part-of-speech tagging.
The morphological dictionary is created from Morphium and SCOWL (Spell Checker Oriented Word Lists), the PoS tagger is trained on WSJ (Wall Street Journal). and This work has been using language resources developed and/or stored and/or distributed by the LINDAT/CLARIN project of the Ministry of Education of the Czech Republic (project LM2010013).
The morphological POS analyzer development was supported by grant of the Ministry of Education, Youth and Sports of the Czech Republic No. LC536 "Center for Computational Linguistics". The morphological POS analyzer research was performed by Johanka Spoustová (Spoustová 2008; the Treex::Tool::EnglishMorpho::Analysis Perl module). The lemmatizer was implemented by Martin Popel (Popel 2009; the Treex::Tool::EnglishMorpho::Lemmatizer Perl module). The lemmatizer is based on morpha, which was released under LGPL licence as a part of RASP system (http://ilexir.co.uk/applications/rasp).
The tagger algorithm and feature set research was supported by the projects MSM0021620838 and LC536 of Ministry of Education, Youth and Sports of the Czech Republic, GA405/09/0278 of the Grant Agency of the Czech Republic and 1ET101120503 of Academy of Sciences of the Czech Republic. The research was performed by Drahomíra "johanka" Spoustová, Jan Hajič, Jan Raab and Miroslav Spousta.
English-Hindi parallel corpus collected from several sources. Tokenized and sentence-aligned. A part of the data is our patch for the Emille parallel corpus. and FP7-ICT-2007-3-231720 (EuroMatrix Plus) 7E09003 (Czech part of EM+)
English-Slovak parallel corpus consisting of several freely available corpora (Acquis [1], Europarl [2], Official Journal of the European Union [3] and part of OPUS corpus [4] – EMEA, EUConst, KDE4 and PHP) and downloaded website of European Commission [5]. Corpus is published in both in plaintext format and with an automatic morphological annotation.
References:
[1] http://langtech.jrc.it/JRC-Acquis.html/
[2] http://www.statmt.org/europarl/
[3] http://apertium.eu/data
[4] http://opus.lingfil.uu.se/
[5] http://ec.europa.eu/ and This work has been supported by the grant Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of the Czech Republic)
EngVallex is the English counterpart of the PDT-Vallex valency lexicon, using the same view of valency, valency frames and the description of a surface form of verbal arguments. EngVallex contains links also to PropBank and Verbnet, two existing English predicate-argument lexicons used, i.a., for the PropBank project. The EngVallex lexicon is fully linked to the English side of the PCEDT parallel treebank, which is in fact the PTB re-annotated using the Prague Dependency Treebank style of annotation. The EngVallex is available in an XML format in our repository, and also in a searchable form with examples from the PCEDT.
EngVallex 2.0 as a slightly updated version of EngVallex. It is the English counterpart of the PDT-Vallex valency lexicon, using the same view of valency, valency frames and the description of a surface form of verbal arguments. EngVallex contains links also to PropBank (English predicate-argument lexicon). The EngVallex lexicon is fully linked to the English side of the PCEDT parallel treebank(s), which is in fact the PTB re-annotated using the Prague Dependency Treebank style of annotation. The EngVallex is available in an XML format in our repository, and also in a searchable form with examples from the PCEDT. EngVallex 2.0 is the same dataset as the EngVallex lexicon packaged with the PCEDT 3.0 corpus, but published separately under a more permissive licence, avoiding the need for LDC licence which is tied to PCEDT 3.0 as a whole.
Enriched discourse annotation of a subset of the Prague Discourse Treebank, adding implicit relations, entity based relations, question-answer relations and other discourse structuring phenomena.
EnTam is a sentence aligned English-Tamil bilingual corpus from some of the publicly available websites that we have collected for NLP research involving Tamil. The standard set of processing has been applied on the the raw web data before the data became available in sentence aligned English-Tamil parallel corpus suitable for various NLP tasks. The parallel corpus includes texts from bible, cinema and news domains.
ESIC (Europarl Simultaneous Interpreting Corpus) is a corpus of 370 speeches (10 hours) in English, with manual transcripts, transcribed simultaneous interpreting into Czech and German, and parallel translations.
The corpus contains source English videos and audios. The interpreters' voices are not published within the corpus, but there is a tool that downloads them from the web of European Parliament, where they are publicly avaiable.
The transcripts are equipped with metadata (disfluencies, mixing voices and languages, read or spontaneous speech, etc.), punctuated, and with word-level timestamps.
The speeches in the corpus come from the European Parliament plenary sessions, from the period 2008-11. Most of the speakers are MEP, both native and non-native speakers of English. The corpus contains metadata about the speakers (name, surname, id, fraction) and about the speech (date, topic, read or spontaneous).
The current version of ESIC is v1.0. It has validation and evaluation parts.
ESIC (Europarl Simultaneous Interpreting Corpus) is a corpus of 370 speeches (10 hours) in English, with manual transcripts, transcribed simultaneous interpreting into Czech and German, and parallel translations.
The corpus contains source English videos and audios. The interpreters' voices are not published within the corpus, but there is a tool that downloads them from the web of European Parliament, where they are publicly avaiable.
The transcripts are equipped with metadata (disfluencies, mixing voices and languages, read or spontaneous speech, etc.), punctuated, and with word-level timestamps.
The speeches in the corpus come from the European Parliament plenary sessions, from the period 2008-11. Most of the speakers are MEP, both native and non-native speakers of English. The corpus contains metadata about the speakers (name, surname, id, fraction) and about the speech (date, topic, read or spontaneous).
ESIC has validation and evaluation parts.
The current version is ESIC v1.1, it extends v1.0 with manual sentence alignment of the tri-parallel texts, and with bi-parallel sentence alignment of English original transcripts and German interpreting.