Hindi monolingual corpus. It is based primarily on web crawls performed using various tools and at various times. Since the web is a living data source, we treat these crawls as completely separate sources, despite they may overlap. To estimate the magnitude of this overlap, we compared the total number of segments if we concatenate the individual sources (each source being deduplicated on its own) with the number of segments if we de-duplicate all sources to- gether. The difference is just around 1%, confirming, that various web crawls (or their subsequent processings) differ significantly.
HindMonoCorp contains data from:
Hindi web texts, a monolingual corpus containing mainly Hindi news articles has already been collected and released by Bojar et al. (2008). We use the HTML files as crawled for this corpus in 2010 and we add a small crawl performed in 2013 and re-process them with the current pipeline. These sources are denoted HWT 2010 and HWT 2013 in the following.
Hindi corpora in W2C have been collected by Martin Majliš during his project to automatically collect corpora in many languages (Majliš and Žabokrtský, 2012). There are in fact two corpora of Hindi available—one from web harvest (W2C Web) and one from the Wikipedia (W2C Wiki).
SpiderLing is a web crawl carried out during November and December 2013 using SpiderLing (Suchomel and Pomikálek, 2012). The pipeline includes extraction of plain texts and deduplication at the level of documents, see below.
CommonCrawl is a non-profit organization that regu- larly crawls the web and provides anyone with the data. We are grateful to Christian Buck for extracting plain text Hindi segments from the 2012 and 2013-fall crawls for us.
Intercorp – 7 books with their translations scanned and manually alligned per paragraph
RSS Feeds from Webdunia.com and the Hindi version of BBC International followed by our custom crawler from September 2013 till January 2014. and LM2010013,
The HMM-based Tagger is a software for morphological disambiguation (tagging) of Czech texts. The algorithm is statistical, based on the Hidden Markov Models.
IDENTIC is an Indonesian-English parallel corpus for research purposes. The corpus is a bilingual corpus paired with English. The aim of this work is to build and provide researchers a proper Indonesian-English textual data set and also to promote research in this language pair. The corpus contains texts coming from different sources with different genres. and The research leading to these results has received funding from the European Commission’s 7th Framework Program under grant agreement no 238405 (CLARA) and by the grant LC536 Centrum Komputacni Lingvistiky of the Czech Ministry of Education.
Environmental impact assessment (EIA) is the formal process used to predict the environmental consequences of a plan. We present a rule-based extraction system to mine Czech EIA documents. The extraction rules work with a set of documents enriched with morphological information and manually created vocabularies of terms supposed to be extracted from the documents, e.g. basic information about the project (address, ID company, ...), data on the impacts and outcomes (waste substances, endangered species, ...), a final opinion. The documents Notice of Intent contains the section BI2 with the information on the scope (capacity) of the plan.
KER is a keyword extractor that was designed for scanned texts in Czech and English. It is based on the standard tf-idf algorithm with the idf tables trained on texts from Wikipedia. To deal with the data sparsity, texts are preprocessed by Morphodita: morphological dictionary and tagger.
This package contains data sets for development and testing of machine translation of medical search short queries between Czech, English, French, and German. The queries come from general public and medical experts. and This work was supported by the EU FP7 project Khresmoi (European Comission contract No. 257528). The language resources are distributed by the LINDAT/Clarin project of the Ministry of Education, Youth and Sports of the Czech Republic (project no. LM2010013).
We thank Health on the Net Foundation for granting the license for the English general public queries, TRIP database for granting the license for the English medical expert queries, and three anonymous translators and three medical experts for translating amd revising the data.
This package contains data sets for development and testing of machine translation of medical queries between Czech, English, French, German, Hungarian, Polish, Spanish ans Swedish. The queries come from general public and medical experts. This is version 2.0 extending the previous version by adding Hungarian, Polish, Spanish, and Swedish translations.
This package contains data sets for development and testing of machine translation of sentences from summaries of medical articles between Czech, English, French, and German. and This work was supported by the EU FP7 project Khresmoi (European Comission contract No. 257528). The language resources are distributed by the LINDAT/Clarin project of the Ministry of Education, Youth and Sports of the Czech Republic (project no. LM2010013). We thank all the data providers and copyright holders for providing the source data and anonymous experts for translating the sentences.
This package contains data sets for development (Section dev) and testing (Section test) of machine translation of sentences from summaries of medical articles between Czech, English, French, German, Hungarian, Polish, Spanish
and Swedish. Version 2.0 extends the previous version by adding Hungarian, Polish, Spanish, and Swedish translations.