Manual classification of errors of English-Slovak translation according to the classification introduced by Vilar et al. [1]. 50 sentences randomly selected from WMT 2011 test set [2] were translated by 3 MT systems described in [3] and MT errors were manually marked and classified. Reference translation is included.
References:
[1] David Vilar, Jia Xu, Luis Fernando D’Haro and Hermann Ney. Error Analysis of Machine Translation Output. In International Conference on Language Resources and Evaluation, pages 697-702. Genoa, Italy, May 2006.
[2] http://www.statmt.org/wmt11/evaluation-task.html
[3] Petra Galuščáková and Ondřej Bojar. Improving SMT by Using Parallel Data of a Closely Related Language. In Human Language Technologies - The Baltic Perspective - Proceedings of the Fifth International Conference Baltic HLT 2012, volume 247 of Frontiers in AI and Applications, pages 58-65, Amsterdam, Netherlands, October 2012. IOS Press. and This work has been supported by the grant Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic)
Manually ranked outputs of Czech-Slovak translations. Three annotators manually ranked outputs of five MT systems (Česílko, Česílko2, Google Translate and two Moses setups) on three data sets (100 sentences randomly selected from books, 100 sentences randomly selected from Acquis corpus and 50 first sentences from WMT 2010 test set). Ranking was applied in MT systems comparison in [1].
References:
[1] Ondřej Bojar, Petra Galuščáková, and Miroslav Týnovský. Evaluating Quality of Machine Translation from Czech to Slovak. In Markéta Lopatková, editor, Information Technologies - Applications and Theory, pages 3-9, September 2011 and This work has been supported by the grant Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic)
Mapping table for the article Hajič et al., 2024: Mapping Czech Verbal Valency to PropBank Argument Labels, in LREC-COLING 2024, as preprocess by the algorithm described in the paper. This dataset i smeant for verification (replicatoin) purposes only. It will b manually processed further to arrive at a workable CzezchpropBank, to be used in Czech UMR annotation, to be further updated during the annotation. The resulting PropBank frame files fir Czech are expected to be available with some future releases of UMR, containing Czech UMR annotation, or separately.
En-De translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
The models were trained using the MCSQ social surveys dataset (available at https://repo.clarino.uib.no/xmlui/bitstream/handle/11509/142/mcsq_v3.zip).
Their main use should be in-domain translation of social surveys.
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on MCSQ test set (BLEU):
en->de: 67.5 (train: genuine in-domain MCSQ data only)
de->en: 75.0 (train: additional in-domain backtranslated MCSQ data)
(Evaluated using multeval: https://github.com/jhclark/multeval)
En-Ru translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
The models were trained using the MCSQ social surveys dataset (available at https://repo.clarino.uib.no/xmlui/bitstream/handle/11509/142/mcsq_v3.zip).
Their main use should be in-domain translation of social surveys.
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on MCSQ test set (BLEU):
en->ru: 64.3 (train: genuine in-domain MCSQ data)
ru->en: 74.7 (train: additional backtranslated in-domain MCSQ data)
(Evaluated using multeval: https://github.com/jhclark/multeval)
MEd is an annotation tool in which linearly-structured annotations of text or audio data can be created and edited. The tool supports multiple stacked layers of annotations that can be interconnected by links. MEd can also be used for other purposes, such as word-to-word alignment of parallel corpora.
This package provides an evaluation framework, training and test data for semi-automatic recognition of sections of historical diplomatic manuscripts. The data collection consists of 57 Latin charters issued by the Royal Chancellery of 7 different types. Documents were created in the era of John the Blind, King of Bohemia (1310–1346) and Count of Luxembourg. Manuscripts were digitized, transcribed, and typical sections of medieval charters ('corroboratio', 'datatio', 'dispositio', 'inscriptio', 'intitulatio', 'narratio', and 'publicatio') were manually tagged. Manuscripts also contain additional metadata, such as manually marked named entities and short Czech abstracts.
Recognition models are first trained using manually marked sections in training documents and the trained model can then be used for recognition of the sections in the test data. The parsing script supports methods based on Cosine Distance, TF-IDF weighting and adapted Viterbi algorithm.
Migrant Stories is a corpus of 1017 short biographic narratives of migrants supplemented with meta information about countries of origin/destination, the migrant gender, GDP per capita of the respective countries, etc. The corpus has been compiled as a teaching material for data analysis.