This record contains audio recordings of proceedings of the Chamber of Deputies of the Parliament of the Czech Republic. The recordings have been provided by the official websites of the Chamber of Deputies, and the set contains them in their original format with no further processing.
Recordings cover all available audio files from 2013-11-25 to 2023-07-26. Audio files are packed by year (2013-2023) and quarter (Q1-Q4) in tar archives audioPSP-YYYY-QN.tar.
Furthermore, there are two TSV files: audioPSP-meta.quarterArchive.tsv contains metadata about archives, and audioPSP-meta.audioFile.tsv contains metadata about individual audio files.
This dataset contains automatic paraphrases of Czech official reference translations for the Workshop on Statistical Machine Translation shared task. The data covers the years 2011, 2013 and 2014.
For each sentence, at most 10000 paraphrases were included (randomly selected from the full set).
The goal of using this dataset is to improve automatic evaluation of machine translation outputs.
If you use this work, please cite the following paper:
Tamchyna Aleš, Barančíková Petra: Automatic and Manual Paraphrases for MT Evaluation. In proceedings of LREC, 2016.
Automatically generated spelling correction corpus for Czech (Czesl-SEC-AG) is a corpus containg text with automatically generated spelling errors. To create spelling errors, a character error model containing probabilities of character substitution, insertion, deletion and probabilities of swaping two adjacent characters is used. Besides these probabilities, also the probabilities of changing character casing are considered. The original clean text on which the spelling errors were generated is PDT3.0 (http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3). The original train/dev/test sentence split of PDT3.0 corpus is preserved in this dataset.
Besides the data with artificial spelling errors, we also publish texts from which the character error model was created. These are the original manual transcript of an audiobook Švejk and its corrected version performed by authors of Korektor (http://ufal.mff.cuni.cz/korektor). These data are similarly to CzeSL Grammatical Error Correction Dataset (CzeSL-GEC: http://hdl.handle.net/11234/1-2143) processed into four sets based on error difficulty present.
Data
-------
Bengali Visual Genome (BVG for short) 1.0 has similar goals as Hindi Visual Genome (HVG) 1.1: to support the Bengali language. Bengali Visual Genome 1.0 is the multi-modal dataset in Bengali for machine translation and image
captioning. Bengali Visual Genome is a multimodal dataset consisting of text and images suitable for English-to-Bengali multimodal machine translation tasks and multimodal research. We follow the same selection of short English segments (captions) and the associated images from Visual Genome as HGV 1.1 has. For BVG, we manually translated these captions from English to Bengali taking the associated images into account. The manual translation is performed by the native Bengali speakers without referring to any machine translation system.
The training set contains 29K segments. Further 1K and 1.6K segments are provided in development and test sets, respectively, which follow the same (random) sampling from the original Hindi Visual Genome. A third test set is
called the ``challenge test set'' and consists of 1.4K segments. The challenge test set was created for the WAT2019 multi-modal task by searching for (particularly) ambiguous English words based on the embedding similarity and
manually selecting those where the image helps to resolve the ambiguity. The surrounding words in the sentence however also often include sufficient cues to identify the correct meaning of the ambiguous word.
Dataset Formats
---------------
The multimodal dataset contains both text and images.
The text parts of the dataset (train and test sets) are in simple tab-delimited plain text files.
All the text files have seven columns as follows:
Column1 - image_id
Column2 - X
Column3 - Y
Column4 - Width
Column5 - Height
Column6 - English Text
Column7 - Bengali Text
The image part contains the full images with the corresponding image_id as the file name. The X, Y, Width and Height columns indicate the rectangular region in the image described by the caption.
Data Statistics
---------------
The statistics of the current release are given below.
Parallel Corpus Statistics
--------------------------
Dataset Segments English Words Bengali Words
---------- -------- ------------- -------------
Train 28930 143115 113978
Dev 998 4922 3936
Test 1595 7853 6408
Challenge Test 1400 8186 6657
---------- -------- ------------- -------------
Total 32923 164076 130979
The word counts are approximate, prior to tokenization.
Citation
--------
If you use this corpus, please cite the following paper:
@inproceedings{hindi-visual-genome:2022,
title= "{Bengali Visual Genome: A Multimodal Dataset for Machine Translation and Image Captioning}",
author={Sen, Arghyadeep
and Parida, Shantipriya
and Kotwal, Ketan
and Panda, Subhadarshi
and Bojar, Ond{\v{r}}ej
and Dash, Satya Ranjan},
editor={Satapathy, Suresh Chandra
and Peer, Peter
and Tang, Jinshan
and Bhateja, Vikrant
and Ghosh, Anumoy},
booktitle= {Intelligent Data Engineering and Analytics},
publisher= {Springer Nature Singapore},
address= {Singapore},
pages = {63--70},
isbn = {978-981-16-6624-7},
doi = {10.1007/978-981-16-6624-7_7},
}
Relationship extraction models for the Czech language. Models are trained on CERED (dataset created by distant supervision on Czech Wikipedia and Wikidata) and recognize a subset of Wikidata relations (listed in CEREDx.LABELS).
We supply a demo.py that performs inference on user-defined input and requirements.txt file for pip. Adapt the demo code to use the model.
Both the dataset and the models are presented in Relationship Extraction thesis.
The system Česílko (language data and software tools) was first developed as an answer to a growing need of translation and localisation from one source language to many target languages. The starting system belonged to the Shallow Parse, Shallow Transfer Rule-Based Machine Translation – (RBMT) paradigm and it was designed primarily for translation of related languages. The latest implementation of the system uses a stochastic ranker; so technically it belongs to the hybrid machine translation paradigm, using stochastic methods combined with the traditional Shallow Transfer RBMT methods. The system has been stripped of the accompanying language resources due to copyright restrictions. The data that is available is just for demonstrative purposes.
CoDipA UNSC 1.0, or a Corpus of Diplomatic Attitudes of the United Nations Security Council is a language resource manually annotated with the attitude-part of Appraisal theory. The speeches were selected according to topic-related
and temporal criteria, and are representative of 5 major international military conflicts that have occurred between 1995 and 2020. The texts were annotated according to the predefined annotation scenario, which is based on the original Appraisal theory and later available commentaries on specificity of its implementation.
The annotated texts are available in JSON Lines format. The corpus also contains double annotations of the 8 selected speeches.
Czech data - both train and test+eval sets, as well as the valency dictionary - for the CoNLL 2009 Shared Task. Documentation is included. The data are generated from PDT 2.0. LDC catalog number: LDC2009E34B and MSM 0021620838 (http://ufal.mff.cuni.cz:8080/bib/?section=grant&id=116488695895567&mode=view)