Corpus AKCES 2 consists of trancripts of recordings of classes at Czech elementary and secondary schools (AKCES/CLAC - Czech Language Acquisition Corpora). It is the same data as the corpus "Schola 2010" (see the link for search), but all the proper names have been removed in order to protect the privacy of participants. and MŠMT (MSM0021620825), UK (PRVOUK P 10)
Corpus AKCES 2 ver. 2 consists of full, unabridged trancripts of recordings of classes at Czech elementary and secondary schools (AKCES/CLAC - Czech Language Acquisition Corpora). It is the same data as the corpus "Schola 2010" (see the link for search), but all the proper names have been removed in order to protect the privacy of participants. and UK, PRVOUK P10
Corpus AKCES 3 includes texts written in czech by non-native speakers (AKCES/CLAC - Czech Language Acquisition Corpora) and ESF (OPVK CZ.1.07/2.2.00/07.0259), MŠMT (MSM0021620825), UK (P10)
Corpus AKCES 4 includes texts written in czech by youth growing up in locations at risk of social exclusion (AKCES/CLAC - Czech Language Acquisition Corpora) and ESF (OPVK CZ.1.07/2.2.00/07.0259), MŠMT (MSM0021620825), UK (P10)
In NLP Centre, dividing text into sentences is currently done with
a tool which uses rule-based system. In order to make enough training
data for machine learning, annotators manually split the corpus of contemporary text
CBB.blog (1 million tokens) into sentences.
Each file contains one hundredth of the whole corpus and all data were
processed in parallel by two annotators.
The corpus was created from ten contemporary blogs:
hintzu.otaku.cz
modnipeklo.cz
bloc.cz
aleneprokopova.blogspot.com
blog.aktualne.cz
fuchsova.blog.onaidnes.cz
havlik.blog.idnes.cz
blog.aktualne.centrum.cz
klusak.blogspot.cz
myego.cz/welldone
The corpus consists of recordings from the Chamber of Deputies of the Parliament of the Czech Republic. It currently consists of 88 hours of speech data, which corresponds roughly to 0.5 million tokens. The annotation process is semi-automatic, as we are able to perform the speech recognition on the data with high accuracy (over 90%) and consequently align the resulting automatic transcripts with the speech. The annotator’s task is then to check the transcripts, correct errors, add proper punctuation and label speech sections with information about the speaker. The resulting corpus is therefore suitable for both acoustic model training for ASR purposes and training of speaker identification and/or verification systems. The archive contains 18 sound files (WAV PCM, 16-bit, 44.1 kHz, mono) and corresponding transcriptions in XML-based standard Transcriber format (http://trans.sourceforge.net)
The date of airing of a particular recording is encoded in the filename in the form SOUND_YYMMDD_*. Note that the recordings are usually aired in the early morning on the day following the actual Parliament session. If the recording is too long to fit in the broadcasting scheme, it is divided into several parts and aired on the consecutive days.