Sentence-parallel corpus made from English and Czech Wikipedias based on translated articles from English into Czech.
The work done is described in the paper: ŠTROMAJEROVÁ, Adéla, Vít BAISA a Marek BLAHUŠ. Between Comparable and Parallel: English-Czech Corpus from Wikipedia. In RASLAN 2016 Recent Advances in Slavonic Natural Language Processing. Brno: Tribun EU, 2016. s. 3-8, 6 s. ISBN 978-80-263-1095-2.
English-Hindi parallel corpus collected from several sources. Tokenized and sentence-aligned. A part of the data is our patch for the Emille parallel corpus. and FP7-ICT-2007-3-231720 (EuroMatrix Plus) 7E09003 (Czech part of EM+)
English-Slovak parallel corpus consisting of several freely available corpora (Acquis [1], Europarl [2], Official Journal of the European Union [3] and part of OPUS corpus [4] – EMEA, EUConst, KDE4 and PHP) and downloaded website of European Commission [5]. Corpus is published in both in plaintext format and with an automatic morphological annotation.
References:
[1] http://langtech.jrc.it/JRC-Acquis.html/
[2] http://www.statmt.org/europarl/
[3] http://apertium.eu/data
[4] http://opus.lingfil.uu.se/
[5] http://ec.europa.eu/ and This work has been supported by the grant Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of the Czech Republic)
English-Urdu parallel corpus is a collection of religious texts (Quran, Bible) in English and Urdu language with sentence alignments. The corpus can be used for experiments with statistical machine translation. Our modifications of crawled data include but are not limited to the following:
1- Manually corrected sentence alignment of the corpora.
2- Our data split (training-development-test) so that our published experiments can be reproduced.
3- Tokenization (optional, but needed to reproduce our experiments).
4- Normalization (optional) of e.g. European vs. Urdu numerals, European vs. Urdu punctuation, removal of Urdu diacritics.
EngVallex is the English counterpart of the PDT-Vallex valency lexicon, using the same view of valency, valency frames and the description of a surface form of verbal arguments. EngVallex contains links also to PropBank and Verbnet, two existing English predicate-argument lexicons used, i.a., for the PropBank project. The EngVallex lexicon is fully linked to the English side of the PCEDT parallel treebank, which is in fact the PTB re-annotated using the Prague Dependency Treebank style of annotation. The EngVallex is available in an XML format in our repository, and also in a searchable form with examples from the PCEDT.
EngVallex 2.0 as a slightly updated version of EngVallex. It is the English counterpart of the PDT-Vallex valency lexicon, using the same view of valency, valency frames and the description of a surface form of verbal arguments. EngVallex contains links also to PropBank (English predicate-argument lexicon). The EngVallex lexicon is fully linked to the English side of the PCEDT parallel treebank(s), which is in fact the PTB re-annotated using the Prague Dependency Treebank style of annotation. The EngVallex is available in an XML format in our repository, and also in a searchable form with examples from the PCEDT. EngVallex 2.0 is the same dataset as the EngVallex lexicon packaged with the PCEDT 3.0 corpus, but published separately under a more permissive licence, avoiding the need for LDC licence which is tied to PCEDT 3.0 as a whole.
Enriched discourse annotation of a subset of the Prague Discourse Treebank, adding implicit relations, entity based relations, question-answer relations and other discourse structuring phenomena.
Explorer Enrique Stanko Vráz with his colleague Josef Kořenský and botanist Karel Domin in the Botanical Garden in Prague-Na Slupi in the documentary Několik čelných cestovatelů českých (Leading Czech Explorers, Masaryk´s People´s Institute, 1928).
EnTam is a sentence aligned English-Tamil bilingual corpus from some of the publicly available websites that we have collected for NLP research involving Tamil. The standard set of processing has been applied on the the raw web data before the data became available in sentence aligned English-Tamil parallel corpus suitable for various NLP tasks. The parallel corpus includes texts from bible, cinema and news domains.
In the recent years, Transformer-based models have lead to significant advances in language modelling for natural language processing. However, they require a vast amount of data to be (pre-)trained and there is a lack of corpora in languages other than English. Recently, several initiatives have presented multilingual datasets obtained from automatic web crawling. However, the results in Spanish present important shortcomings, as they are either too small in comparison with other languages, or present a low quality derived from sub-optimal cleaning and deduplication. In this paper, we introduce esCorpius, a Spanish crawling corpus obtained from near 1 Pb of Common Crawl data. It is the most extensive corpus in Spanish with this level of quality in the extraction, purification and deduplication of web textual content. Our data curation process involves a novel highly parallel cleaning pipeline and encompasses a series of deduplication mechanisms that together ensure the integrity of both document and paragraph boundaries. Additionally, we maintain both the source web page URL and the WARC shard origin URL in order to complain with EU regulations. esCorpius has been released under CC BY-NC-ND 4.0 license.