Pretrained model weights for the UDify model, and extracted BERT weights in pytorch-transformers format. Note that these weights slightly differ from those used in the paper.
UDPipe is an trainable pipeline for tokenization, tagging, lemmatization and dependency parsing of CoNLL-U files. UDPipe is language-agnostic and can be trained given only annotated data in CoNLL-U format. Trained models are provided for nearly all UD treebanks. UDPipe is available as a binary, as a library for C++, Python, Perl, Java, C#, and as a web service.
UDPipe is a free software under Mozilla Public License 2.0 (http://www.mozilla.org/MPL/2.0/) and the linguistic models are free for non-commercial use and distributed under CC BY-NC-SA (http://creativecommons.org/licenses/by-nc-sa/4.0/) license, although for some models the original data used to create the model may impose additional licensing conditions. UDPipe is versioned using Semantic Versioning (http://semver.org/).
UDPipe website http://ufal.mff.cuni.cz/udpipe contains download links of both the released packages and trained models, hosts documentation and offers online demo.
UDPipe development repository http://github.com/ufal/udpipe is hosted on GitHub.
This is the first release of the UFAL Parallel Corpus of North Levantine, compiled by the Institute of Formal and Applied Linguistics (ÚFAL) at Charles University within the Welcome project (https://welcome-h2020.eu/). The corpus consists of 120,600 multiparallel sentences in English, French, German, Greek, Spanish, and Standard Arabic selected from the OpenSubtitles2018 corpus [1] and manually translated into the North Levantine Arabic language. The corpus was created for the purpose of training machine translation for North Levantine and the other languages.
UMC 0.1 Czech-English-Russian is a multilingual parallel corpus of texts in Czech, Russian and English languages with automatic pairwise sentence alignments. The primary aim of UMC is to extend the set of languages covered by the corpus CzEng mainly for the purposes of machine translation.
All the texts were downloaded from a single source — The Project Syndicate (Copyright: Project Syndicate 1995-2008), which contains a huge collection of high-quality news articles and commentaries. We were given the permission to use the texts for research and non-commercial purposes. and FP6-IST-5-034291-STP (EuroMatrix)
The goal of the Uniform Meaning Representation (UMR) project is to design a meaning representation that can be used to annotate the semantic content of a text. UMR is primarily based on Abstract Meaning Representation (AMR), an annotation framework initially designed for English, but also draws from other meaning representations. UMR extends AMR to other languages, particularly morphologically complex, low-resource languages. UMR also adds features to AMR that are critical to semantic interpretation and enhances AMR by proposing a companion document-level representation that captures linguistic phenomena such as coreference as well as temporal and modal dependencies that potentially go beyond sentence boundaries. UMR is intended to be scalable, learnable, and cross-linguistically plausible. It is designed to support both lexical and logical inference.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008). This is the second release of UD Treebanks, Version 1.1.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Parsing models for all Universal Depenencies 1.2 Treebanks, created solely using UD 1.2 data (http://hdl.handle.net/11234/1-1548).
To use these models, you need Parsito binary, which you can download from http://hdl.handle.net/11234/1-1584.
Tokenizer, POS Tagger, Lemmatizer and Parser models for all Universal Depenencies 1.2 Treebanks, created solely using UD 1.2 data (http://hdl.handle.net/11234/1-1548).
To use these models, you need UDPipe binary, which you can download from http://ufal.mff.cuni.cz/udpipe.