The great capricorn beetle or Cerambyx longicorn (Cerambyx cerdo, Linnaeus, 1758) is an internationally protected umbrella species representing the highly diverse and endangered fauna associated with senescent oaks. For the conservation and monitoring of populations of C. cerdo it is important to have a good knowledge of its microhabitat requirements. We investigated determinants and patterns of C. cerdo distribution within individual old, open-grown oaks. Trees inhabited by this species were climbed, and the number of exit holes and environmental variables recorded at two sites in the Czech Republic. Distribution of exit holes in relation to height above the ground, trunk shading by branches, orientation in terms of the four cardinal directions, diameter, surface and volume of inhabited tree parts were investigated. This study revealed that the number of exit holes in the trunks of large open-grown oaks was positively associated with the diameter of the trunk and openness and negatively with height above the ground, and the effects of diameter and openness changed with height. The number of exit holes in the surface of a trunk was also associated with the cardinal orientation of the surface. Approximately half of both C. cerdo populations studied developed less than 4 m and approximately a third less than 2 m above the ground. This indicates that most C. cerdo develop near the ground. Active management that prevents canopy closure is thus crucial for the survival of C. cerdo and searching for exit holes is an effective method of detecting sites inhabited by this species., Jan Albert, Michal Platek, Lukas Cizek., and Obsahuje seznam literatury
Caterpillars of the poplar lutestring moth, Tethea or, construct leaf shelters that they defend against intruding conspecifics using a combination of vibratory signals and physical aggression. Staged interactions between a resident caterpillar and introduced conspecific were recorded with a video camera and laser vibrometer. Residents crawl towards the intruder and perform three behaviours: lateral hitting, pushing, and mandible scraping. Vibrations caused by mandible scraping result from the caterpillar repeatedly scraping opened mandibles laterally against the leaf surface in bouts lasting 1.16 ± 0.39 s, with an average of 4 ± 1 scrapes per bout. We propose that these scrapes function in leaf shelter defense against conspecifics for the following reasons: Mandible scrapes are produced only by residents; they are generated when a resident is approached by an intruder; the rate of scraping increases as the intruder approaches the shelter; and residents in all trials retain their shelters, with the intruder leaving the leaf within 127.9 ±104.3s from the beginning of the trial. The function and evolutionary origins of vibration-mediated territoriality in caterpillars are discussed. and Jaclyn L. Scott, Jayne E. Yack.
Vývoj rostlin [přehledně], zvláště stromů a keřů v dobách geologických, Jan Evang. Chadt (Ševětínský), Na základě různých pramenů, Zvl. otisk ze spisu Květena, and Obsahuje bibliografii