We derive the phenomena of Landau damping as a stationary point of entropy functions with Lagrangian methods. The steady states are described inside of some interval of numbers with infinite fuzzy logic controllers. The results are also true for local equilibriums, i.e. for some global non-equilibriums functions.
Hypertrophied hearts are known for increased risk of arrhythmias and are linked with reduced ischemic tolerance. However, still little is known about state characterized only by increased left ventricle (LV) mass fraction. Seventeen isolated rabbit hearts with various LV mass were divided into two groups according to LV weight/heart weight ratio (LVW/HW ratio), namely group H and L (with higher and lower LVW/HW ratio, respectively) and underwent three short cycles of global ischemia and reperfusion. The differences in electrogram (heart rate, QRSmax, mean number, onset and dominant form of ventricular premature beats) and in biochemical markers of myocardial injury (creatine kinase, lactate dehydrogenase - LDH) and lipid peroxidation (4-hydroxy-2-nonenal - 4-HNE) were studied. As compared to group L, hearts in group H exhibited lower tolerance to ischemia expressed as higher incidence and severity of arrhythmias in the first ischemic period as well as increase of LDH and 4-HNE after the first reperfusion. In the third cycle of ischemia-reperfusion, the preconditioning effect was observed in both electrophysiological parameters and LDH release in group H. Our results showed consistent trends when comparing changes in electrograms and biochemical markers. Moreover, 4-HNE seems to be good potential parameter of moderate membrane alteration following ischemia-reperfusion injury., M. Hlaváčová, V. Olejníčková, M. Ronzhina, T. Stračina, O. Janoušek, M. Nováková, P. Babula, J. Kolářová, I. Provazník, H. Paulová., and Obsahuje bibliografii