Larvae of the stag beetle, Dorcus rectus, feed on decaying wood, which they digest with the aid of symbiotic yeasts; however, they can be successfully reared on artificial diets containing only fungal tissue. In this study we tested whether D. rectus larvae can utilize fungal cell walls, which are an insoluble component of mycelium. Lyophilized Bjerkandera adusta mycelium cultured in potato-dextrose liquid medium consisted of a 47.6% hot-water insoluble fraction by mass, which contains 53.7% of the total nitrogen in the mycelium. D. rectus larvae that hatched from surface-sterilized eggs were reared for 14 days on agar-based diets containing either the soluble fraction, insoluble fraction or both, extracted from 100 mg of mycelium. The larvae increased in mass most on the mixed diet, and there was no difference in their growth on the mixed and positive control diets. Both the soluble and insoluble fractions improved larval growth compared to the negative control diet; however, the growth rates were much lower than those expected from the nitrogen dose-growth response curve obtained in a previous study. Addition of b-chitin to the soluble fraction did not positively affect larval growth. Therefore, we conclude that (1) D. rectus larvae need both the soluble and insoluble fractions of mycelium and (2) the larvae digest the insoluble fraction using their own enzymes., Masahiko Tanahashi, Kôhei Kubota., and Seznam literatury
Herbivorous insects are often highly specialised, likely due to trade-offs in fitness on alternative host species. However, some pest insects are extremely adaptable and readily adopt novel hosts, sometimes causing rapid expansion of their host range as they spread from their original host and geographic origin. The genetic basis of this phenomenon is poorly understood, limiting our ability to predict or mitigate global insect pest outbreaks. We investigated the trajectory of early adaptation to novel hosts in a regionally-specialised global crop pest species (the cowpea seed beetle Callosobruchus maculatus). After experimentally-enforced dietary specialisation for nearly 300 generations, we measured changes in fitness over the first 5 generations of adaptation to 6 novel hosts. Of these, C. maculatus reproduced successfully on all but one, with reduced fitness observed on three hosts in the first generation. Loss of fitness was followed by very rapid, decelerating increases in fitness over the first 1-5 generations, resulting in comparable levels of population fitness to that observed on the original host after 5 generations. Heritability of fitness on novel hosts was high. Adaptation occurred primarily via changes in behavioural and phenological traits, and never via changes in offspring survival to adulthood, despite high heritability for this trait. These results suggest that C. maculatus possesses ample additive genetic variation for very rapid host shifts, despite a prolonged period of enforced specialization, and also suggest that some previously-inferred environmental maternal effects on host use may in part actually represent (rapidly) evolved changes. We highlight the need to examine in more detail the genetic architecture facilitating retention of high additive genetic variation for host shifts in extremely adaptable global crop pests., Thomas N. Price, Aoife Leonard, Lesley T. Lancaster., and Obsahuje bibliografii
Survival under dry conditions was examined in males and females of Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae), a beetle of tropical origin. The range of individual responses and the effect of gender on water loss were also evaluated. Females exhibit significantly longer survival (Lt50 and Lt90) than males under desiccating conditions. Larger females beetles have a greater initial water mass and hence can tolerate greater water losses. Such beetles have longer survival under dry conditions. Males and females loose an average of 54.8 and 58.9% of their body water prior to death. The insects were inactive most of the time, when kept under dry conditions; the rate of decrease in body water was thus reduced. Beetles of both gender display a negative correlation between the rates of water loss under desiccating conditions and the duration of survival. We conclude that the difference in survival period between males and females is due to a combination of greater female tolerance to desiccation and larger body size.
Large veteran trees are key structures sustaining biodiversity in wooded landscapes. Many organisms associated with
such trees are, however, also able to inhabit suitable trees with smaller diameters or other surrogate habitats. Understanding the
mechanisms behind the importance of veteran trees and the conditions enabling veteran tree specialists to exploit smaller trees
might help conservation efforts targeted at the diverse and highly endangered biota associated with veteran trees. To investigate
this, we studied local patterns in the exploitation of trees by a veteran tree specialist, the great capricorn beetle (Cerambyx cerdo),
at three sites with different soil characteristics, namely fl oodplain, dry-sandy and dry-rocky sites, where this beetle exploits oaks
of large (~1.5 m), medium (~0.75 m) and small (~0.25 m) diameters, respectively. We recorded the presence and number of exit
holes made by C. cerdo on each tree and related these to the characteristics of the trees: their diameters, openness of the canopy
around them and their state of health. The probability of occurrence and the number of exit holes increased with tree diameter,
canopy openness, and decreasing tree health, but these relationships differed considerably among the study sites. In dry conditions, trees of small diameters were more likely to be exploited by the beetle than in the fl oodplain. The number of exit holes, on
the other hand, was a function of tree diameter, with large trees sustaining more beetles and thus acting as larger habitat patches.
The species of oak affected the probability of exit hole presence as the sessile oak (Quercus petraea) and pedunculate oak (Q.
robur) were preferred over Turkey oak (Q. cerris). The slope orientation also affected the presence of exit holes as trees on slopes
with either an eastern or northern orientation were not exploited by the beetle. This study revealed a high level of between-site
variability in the tree characteristics relevant to predicting the occurrence of C. cerdo, mainly with respect to diameter. Therefore,
while the general patterns of habitat use and the fundamental niche of this beetle are well known, survival and protection of local
populations is dependent on site-specifi c characteristics. The realized niche of this beetle must therefore be carefully considered
when planning conservation management for a particular site. The results also signify that at some sites, small trees can, at least
temporarily, substitute for scarce large trees if the state of their health is managed using proper conservation measures.