Let G be a finite group, and let N(G) be the set of conjugacy class sizes of G. By Thompson’s conjecture, if L is a finite non-abelian simple group, G is a finite group with a trivial center, and N(G) = N(L), then L and G are isomorphic. Recently, Chen et al. contributed interestingly to Thompson’s conjecture under a weak condition. They only used the group order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups (see Li’s PhD dissertation). In this article, we investigate validity of Thompson’s conjecture under a weak condition for the alternating groups of degrees p+1 and p+2, where p is a prime number. This work implies that Thompson’s conjecture holds for the alternating groups of degree p + 1 and p + 2., Alireza Khalili Asboei, Reza Mohammadyari., and Obsahuje seznam literatury
Let $G$ be a finite group. Let $X_1(G)$ be the first column of the ordinary character table of $G$. We will show that if $X_1(G)=X_1({\rm PGU}_3(q^2))$, then $G \cong{\rm PGU}_3(q^2)$. As a consequence, we show that the projective general unitary groups ${\rm PGU}_3(q^2)$ are uniquely determined by the structure of their complex group algebras., Farrokh Shirjian, Ali Iranmanesh., and Obsahuje bibliografické odkazy
Let D be a Cd q-convex intersection, d > 2, 0 6 q 6 n − 1, in a complex manifold X of complex dimension n, n > 2, and let E be a holomorphic vector bundle of rank N over X. In this paper, Ck-estimates, k = 2, 3, . . . ,1, for solutions to the -equation with small loss of smoothness are obtained for E-valued (0, s)-forms on D when n − q 6 s 6 n. In addition, we solve the -equation with a support condition in Ck-spaces. More precisely, we prove that for a -closed form f in Ck 0,q(X \ D,E), 1 6 q 6 n − 2, n > 3, with compact support and for " with 0 < " < 1 there exists a form u in Ck−ε 0,q−1(X \ D,E) with compact support such that u = f in X \ D. Applications are given for a separation theorem of Andreotti-Vesentini type in Ck-setting and for the solvability of the -equation for currents., Shaban Khidr, Osama Abdelkader., and Seznam literatury
A Lie algebra $L$ is called 2-step nilpotent if $L$ is not abelian and $[L, L]$ lies in the center of $L$. 2-step nilpotent Lie algebras are useful in the study of some geometric problems, and their classification has been an important problem in Lie theory. In this paper, we give a classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center., Ren Bin, Zhu Lin Sheng., and Obsahuje bibliografii
Let R be a commutative ring with nonzero identity and J(R) the Jacobson radical of R. The Jacobson graph of R, denoted by JR, is defined as the graph with vertex set RJ(R) such that two distinct vertices x and y are adjacent if and only if 1 − xy is not a unit of R. The genus of a simple graph G is the smallest nonnegative integer n such that G can be embedded into an orientable surface Sn. In this paper, we investigate the genus number of the compact Riemann surface in which JR can be embedded and explicitly determine all finite commutative rings R (up to isomorphism) such that JR is toroidal., Krishnan Selvakumar, Manoharan Subajini., and Obsahuje seznam literatury
For a finitely generated group, we study the relations between its rank, the maximal rank of its free quotient, called co-rank (inner rank, cut number), and the maximal rank of its free abelian quotient, called the Betti number. We show that any combination of the group’s rank, co-rank, and Betti number within obvious constraints is realized for some finitely presented group (for Betti number equal to rank, the group can be chosen torsion-free). In addition, we show that the Betti number is additive with respect to the free product and the direct product of groups. Our results are important for the theory of foliations and for manifold topology, where the corresponding notions are related with the cut-number (or genus) and the isotropy index of the manifold, as well as with the operations of connected sum and direct product of manifolds., Irina Gelbukh., and Obsahuje seznam literatury
The nullity of a graph G is the multiplicity of zero as an eigenvalue in the spectrum of its adjacency matrix. From the interlacing theorem, derived from Cauchy’s inequalities for matrices, a vertex of a graph can be a core vertex if, on deleting the vertex, the nullity decreases, or a Fiedler vertex, otherwise. We adopt a graph theoretical approach to determine conditions required for the identification of a pair of prescribed types of root vertices of two graphs to form a cut-vertex of unique type in the coalescence. Moreover, the nullity of subgraphs obtained by perturbations of the coalescence G is determined relative to the nullity of G. This has direct applications in spectral graph theory as well as in the construction of certain ipso-connected nano-molecular insulators., Didar A. Ali, John Baptist Gauci, Irene Sciriha, Khidir R. Sharaf., and Obsahuje seznam literatury
Let $(R,\mathfrak m)$ be a commutative Noetherian regular local ring of dimension $d$ and $I$ be a proper ideal of $R$ such that ${\rm mAss}_R(R/I)={\rm Assh}_R(I)$. It is shown that the $R$-module $H^{{\rm ht}(I)}_I(R)$ is $I$-cofinite if and only if
${\rm cd}(I,R)={\rm ht}(I)$. Also we present a sufficient condition under which this condition the $R$-module $H^i_I(R)$ is finitely generated if and only if it vanishes., Jafar A'zami, Naser Pourreza., and Obsahuje bibliografické odkazy
Let \Omega \in L^{s}\left ( S^{n-1} \right ) for s\geqslant 1 be a homogeneous function of degree zero and b a BMO function. The commutator generated by the Marcinkiewicz integral μΩ and b is defined by \left[ {b,{\mu _\Omega }} \right](f)(x) = {\left( {\int_0^\infty {{{\left| {\int_{\left| {x - y} \right| \leqslant t} {\frac{{\Omega (x - y)}}{{{{\left| {x - y} \right|}^{n - 1}}}}\left[ {b(x) - b(y)} \right]f(y){\text{d}}y} } \right|}^2}\frac{{{\text{d}}t}}{{{t^3}}}} } \right)^{1/2}}. In this paper, the author proves the \left (L^{p\left ( \cdot \right )}\left ( \mathbb{R}^{n} \right ),L^{p\left ( \cdot \right )}\left ( \mathbb{R}^{n} \right ) \right )-boundedness of the Marcinkiewicz integral operator μΩ and its commutator [b, μΩ ] when p(·) satisfies some conditions. Moreover, the author obtains the corresponding result about μΩ and [b, μΩ ] on Herz spaces with variable exponent., Hongbin Wang., and Obsahuje seznam literatury
The numerical range of an n × n matrix is determined by an n degree hyperbolic ternary form. Helton-Vinnikov confirmed conversely that an n degree hyperbolic ternary form admits a symmetric determinantal representation. We determine the types of Riemann theta functions appearing in the Helton-Vinnikov formula for the real symmetric determinantal representation of hyperbolic forms for the genus g = 1. We reformulate the Fiedler-Helton-Vinnikov formulae for the genus g = 0, 1, and present an elementary computation of the reformulation. Several examples are provided for computing the real symmetric matrices using the reformulation., Mao-Ting Chien, Hiroshi Nakazato., and Obsahuje seznam literatury