a1_A water-tube tiltmeter system composed of two perpendicular tubes was installed in the underground galleries of the Geodynamic Laboratory in the Książ Castle, Central Sudetes, in 2003. The partially filled water tubes are several tens of metres in length and have high-precision interferometric recording gauges at their ends. The recording gauges continuously measure water level changes in the tubes with single-nanometer accuracy which corresponds to 0.005 milliseconds of arc of plumb line variations. The tiltmeter has recorded several events of water level variations, with a magnitude of a few hundred micrometers and a duration of tens of days. The strongest water level variations were one order greater than variations caused by tidal phenomena and occurred in different months of a year, and hence are expected to have no seasonal origin. Because of the extremely large magnitude of the phenomenon and because time of duration of signals showed no seasonal characteristics, all external sources outside the bedrock space occupied by the instrument can also readily be precluded. Each of the recorded strong signals of water level variations consists of a symmetrical and an asymmetrical component. Because of the proportion of the water system to the large-scale geodynamic sources producing water level changes, all the external geodynamic reasons can generate only symmetrical signals in the tubes. The evidence indicates episodic tilting of the instrument itself or vertical displacements of any part of the tubes, which supports the notion of active bedrock deformation. The combination of symmetrical and asymmetrical signals implies that their source is within the bedrock space in which the instrument is embedded. The events of large water level variations can be explained by non-flat relative vertical displacement of the opposite ends of the tiltmeter tubes., a2_Asymmetrical signals are particularly pronounced in the tube named 03-04, and their magnitude suggests vertical displacement of part of the tube of the order of hundreds of micrometres. The repeatability, temporal irregularity, considerable duration time and high magnitude of the strong signals lead us to attribute them to the tilting of tiltmeter bedrock due to contemporary tectonic movements of the Książ Massif. The Książ Massif consists of a rigid rock mass of Famennian−Tournaisian conglomerates cut by several large and small faults. Rock compaction can be precluded. The massif is a prominent bedrock spur carved by a deeply incised river, and its geomorphic development seems to be related to major faults. Preliminary geological study has recognized strike-slip faults, thrusts and extensional fracture zones, some with an indication of recent activity. A few minor faults cross the bedrock under the tiltmeter geodynamic system. The tiltmeter is thus likely to be recording local signals of neotectonic activity., Marek Kaczorowski and Jurand Wojewoda., and Obsahuje bibliografii
a1_For estimation of recent dynamics of morphology of the Sudetes, satellite radar images of 90-meter resolution have been used. Basing on the Digital Elevation Model, trend surfaces and deviation maps of the morphology were made. The analyzed are a ranges over 23000 sq. km and is bordered by the following coordinates: N51°05’32", N49°56’26", E15°02’42" an d E17°37’57". The 8th-order trend surface records four distinct regional morphological domains. These are two elevations with their centres located at N50°46’24" - E15°29’24" and N50°07’24" - E17°13’07", as well as two depressions with centers located at N 50°05’41" - E15°46’58" and at N50°29’39”- E17°28’30", respectively. The elevations and depressions extend both over the crystalline massifs and sediment ary basins and are highly lithologically differentiated. On the deviation map, the elevations display the highest positive values which suggests a local disequilibrium of morphogenic processes during the formation of recent topography. Today’s landscape have been being shaped since the beginning of the Neogene. As the climatic and hydrological conditions have been rather uniform for the whole area, a tectonic uplift must be accounted for the reason of the indicated anomalies occurrence. There is only one unique profile across the elevations and depressions that reflects the smallest amplitude of relative height (black-white dashed-line). It is parallel to the dominant "Sudetic strike", i.e. 115°, and it follows the Intrasudetic Shear Zone (ISZ) that played an important role in the post-Variscan evolution of the Sudetes. Along and inside the ISZ small, mostly pull-apart basins occur (the Krkonoše Piedmont Basin (KPB), the Nachod Basin (NB), the Upper Nysa Kłodzka Trough (UNKT) - the South Sudetic Basins Suite (SSBS) - which are filled with Permian, Triassic and Neogene-to-Recent sediments., a2_The author postulates right lateral regional displacement along and beneath the ISZ as an important factor controlling long time evolution of topography in the analyzed area., Jurand Wojewoda., and Obsahuje bibliografické odkazy
Neotectonics of the Carpathians used to be studied extensively, particular attention being paid to the effects of large-scale domal uplifts and open folding above marginal zones of thrusts and imbricated map-scale folds, and rarely to the characteristics of young faulting. Neotectonic faults tend to be associated with the margins of the Orava-Nowy Targ Basin, superposed on the boundary between the Inner and Outer Western Carpathians, as well as with some regions within the Outer Carpathians. The size of Quaternary tilting of the Tatra Mts. on the sub-Tatric fault were estimated at 100 to 300 m, and recent vertical crustal movements of this area detected by repeated precise levelling are in the range of 0.4-1.0 mm/yr in rate. Minor vertical block movements of oscillatory character (0.5-1 mm/yr) were detected along faults cutting the Pieniny Klippen Belt owing to repeated geodetic measurements performed on the Pieniny geodynamic test area. In the western part of the Western Outer Carpathians, middle and late Pleistocene reactivation of early Neogene thrust surfaces was suggested. Differentiated mobility of reactivated as normal Miocene faults (oriented (N-S to NNW-SSE and NNE-SSW) in the medial portion of the Dunajec River drainage basin appears to be indicated by the results of long-profile analyses of deformed straths, usually of early and middle Pleistocene age. Quaternary uplift of the marginal part of the Beskid Niski (Lower Beskidy) Mts. (W-E to WNW-ESE), in the mid-eastern part of the Outer Western Carpathians of Poland, was estimated at 100-150 m, including no more than 40 m of uplift after the Elsterian stage. The state of research into young faulting of the Outer Carpathians of Poland is still far from sufficient., Witold Zuchiewicz., and Obsahuje bibliografii