Soil salinity is one of the most severe factors limiting growth and physiological response in Raphanus sativus. In this study, the possible role of plant growth promoting bacteria (PGPB) in alleviating soil salinity stress during plant growth under greenhouse conditions was investigated. Increasing salinity in the soil decreased plant growth, photosynthetic pigments content, phytohormones contents (indole-3-acetic acid, IAA and gibberellic acid, GA3) and mineral uptake compared to soil without salinity. Seeds inoculated with Bacillus subtilis and Pseudomonas fluorescens caused significantly increase in fresh and dry masses of roots and leaves, photosynthetic pigments, proline, total free amino acids and crude protein contents compared to noninoculated ones under salinity. The bacteria also increased phytohormones contents (IAA and GA3) and the contents of N, P, K+, Ca2+, and Mg2+ but decreased ABA contents and Na+ and Cl- content which may contribute in part to activation of processes involved in the alleviation of the effect of salt., H. I. Mohamed, E. Z. Gomaa., and Obsahuje bibliografii
An experiment was conducted to study the effect of NaCl (electric conductivity of 0, 4, 8, 12, and 16 dS m-1) on growth, gas exchange parameters, water status, membrane injury, chlorophyll stability index and oxidative defense mechanisms in two cultivars (Gola and Umran) of Indian jujube (Ziziphus mauritiana). Results showed that the dry mass and leaf area reduced linearly with increasing levels of salinity. Net photosynthetic rate (PN), transpiration (E), and stomatal conductance (gs) were comparatively lower in Umran which further declined with salinity. Leaf relative water content, chlorophyll (Chl) stability and membrane stability also decreased significantly under salt stress, with higher magnitude in Umran. Superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) activities were higher in Gola whereas hydrogen peroxide (H2O2) accumulation and lipid peroxidation (MDA content) were higher in control as well as salttreated plants of Umran. The Na+ content was higher in the roots of Gola and in the leaves of Umran, resulting in high K+/Na+ ratio in Gola leaves. Thus it is suggested that salt tolerance mechanism is more efficiently operative in cultivar Gola owing to better management of growth, physiological attributes, antioxidative defense mechanism, and restricted translocation of Na+ from root to leaves along with larger accumulation of K+ in its leaves., R. Agrawal ... [et al.]., and Obsahuje bibliografii
Kappaphycus alvarezii is a seaweed of great economic importance for the extraction of kappa carrageenan from its cell walls. The most common strains are dark red, brown, yellow, and different gradations of green. It is known that ultraviolet radiation (UVR) affects macroalgae in many important ways, including reduced growth rate, reduction of primary productivity, and changes in cell biology and ultrastructure. Therefore, we examined the brown strain of K. alvarezii exposed to ultraviolet-B radiaton (UVBR) for 3 h per day during 28 days of cultivation. The control plants showed growth rates of 7.27% d-1, while plants exposed to UVBR grew only 4.0% d-1. Significant differences in growth rates and in phycobiliproteins between control and exposed plants were also found. Compared with control plants, phycobiliprotein contents were observed to decrease after UV-B exposure. Furthermore, the chlorophyll a (Chl a) contents decreased and showed significant differences. UVBR also caused changes in the ultrastructure of cortical and subcortical cells, which included increased thickness of the cell wall and number of plastoglobuli, reduced intracellular spaces, changes in the cell contour, and destruction of chloroplast internal organization. Reaction with Toluidine Blue showed an increase in the thickness of the cell wall, and Periodic Acid-Schiff stain showed a decrease in the number of starch grains. By the significant changes in growth rates, photosynthetic contents and ultrastructual changes observed, it is clear that UVBR negatively affects intertidal macroalgae and, by extension, their economic viability. and É. C. Schmidt ... [et al.].
The current concentrations of O3 have been shown to cause significant negative effects on crop yield. The present levels of ozone may not induce visible symptoms in most of plants, but can result in substantial losses in reproductive output. This paper considers the impact of ambient O3 on gas exchange, photosynthetic pigments, chlorophyll (Chl) fluorescence and carbohydrate levels in the flag leaf of wheat plants during various stages of reproductive development using open-top chambers. Mean O3 concentration was 45.7 ppb during wheat growth and 50.2 ppb after flag leaf development. Reproductive stage showed higher exceedence of O3 above 40 ppb compared to the vegetative stage. Diurnal variations in net photosynthetic rate (PN) and stomatal conductance (gs), intercellular CO2 concentration (Ci), Fv/Fm ratio, photosynthetic pigments, soluble sugars, and starch were measured at 10, 30, and 50 days after flag leaf expansion (DAFE). The results showed reductions in PN, gs, Fv/Fm ratio, photosynthetic pigments and starch, and increases in Ci, F0, and soluble sugars in nonfiltered chambers (NFCs) compared to filtered chambers (FCs). Maximum changes in measured parameters were observed at 50 DAFE (i.e. grain filling and setting phase). Diurnal variation in PN showed double peaked curve in both FCs and NFCs, but delayed peak and early depression in NFCs. Stomatal conductance was significantly lower in NFCs. The study suggests that higher prevalence of ambient O3 during reproductive development led to significant alteration in physiological vitality of wheat having potential negative influence on yield. and R. Rai, M. Agrawal, S. B. Agrawal.
Most plants growing in temperate desert zone exhibit brief temperature-induced inhibition of photosynthesis at midday in the summer. Heat stress has been suggested to restrain the photosynthesis of desert plants like Alhagi sparsifolia S. It is therefore possible that high midday temperatures damage photosynthetic tissues, leading to the observed inhibition of photosynthesis. In this study, we investigated the mechanisms underlying heat-induced inhibition of photosynthesis in A. sparsifolia, a dominant species found at the transition zone between oasis and sandy desert on the southern fringe of the Taklamakan desert. The chlorophyll (Chl) a fluorescence induction kinetics and CO2 response curves were used to analyze the thermodynamic characters of both photosystem II (PSII) and Rubisco after leaves were exposed to heat stress. When the leaves were heated to temperatures below 43°C, the initial fluorescence of the dark-adapted state (Fo), and the maximum photochemical efficiency of PSII (Fv/Fm), the number of active reaction centers per cross section (RCs) and the leaf vitality index (PI) increased or declined moderately. These responses were reversed, however, upon cooling. Moreover, the energy allocation in PSII remained stable. The gradual appearance of a K point in the fluorescence curve at 48°C indicated that higher temperatures strongly impaired PSII and caused irreversible damage. As the leaf temperature increased, the activity of Rubisco first increased to a maximum at 34°C and then decreased as the temperature rose higher. Under high-temperature stress, cell began to accumulate oxidative species, including ammoniacal nitrogen, hydrogen peroxide (H2O2), and superoxide (O2 .-), suggesting that disruption of photosynthesis may result from oxidative damage to photosynthetic proteins and thylakoid membranes. Under heat stress, the biosynthesis of nonenzyme radical scavenging carotenoids (Cars) increased. We suggest that although elevated temperature affects the heat-sensitive components comprising of PSII and Rubisco, under moderately high temperature the decrease in photosynthesis is mostly due to inactivation of dark reactions. and W. Xue ... [et al.].
We investigated the effect of enhanced atmospheric ammonia (NH3) in combination with low and high nitrogen (LN and HN, respectively) growth medium on photosynthetic characteristics of two maize (Zea mays L.) cultivars (NE5 with high- and SD19 with low N-use efficiency) across long-term growth period and their diurnal change patterns exposed to 10 nl l-1 and 1,000 nl l-1 NH3 fumigation in open-top chambers (OTCs). Regardless of the level of N in medium, increased NH3 concentration promoted maximum net photosynthetic rate (Pmax) and apparent quantum yield (AQY) of both cultivars at earlier growth stages, but inhibited Pmax of NE5 from silking to maturity stage and that of SD19 at maturity stage only above the ambient concentration. Greater positive/less negative responses were predominant in the LN than in the HN treatment, especially for SD19. Dark respiration rate (RD) remained more enhanced in the LN than in the HN treatment for SD19 as well as increased in the LN while decreased in the HN treatment for NE5 at their silking stage, following exposure to elevated NH3 concentration. Additionally, enhanced atmospheric NH3 increased net photosynthetic rate (PN) and stomatal conductance (gs) but reduced intercellular CO2 concentration (Ci) of both cultivars with either the LN or HN treatment during the diurnal period at tasseling stage. The diurnal change patterns of PN and gs showed bimodal curve type and those of Ci presented single W-curve type for NE5, when NH3 concentration was enhanced. As for SD19, single-peak curve type was showed for both PN and gs while single V-curve type for Ci. All results supported the hypothesis that appropriately enhanced atmospheric NH3 can increase assimilation of CO2 by improving photosynthesis of maize plant, especially at earlier growth stages and after photosynthetic "noon-break" point. These impacts of elevated NH3 concentration were more beneficial for SD19 as compared to those for NE5, especially in the LN supply environment. and L. X. Zhang ... [et al.].
The objective of this study was to investigate the effect of elevated (550 ± 17 μmol mol-1) CO2 concentration ([CO2]) on leaf ultrastructure, leaf photosynthesis and seed yield of two soybean cultivars [Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35] at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic acclimation occurred in soybean plants exposed to long-term elevated [CO2] and varied with cultivars and developmental stages. Photosynthetic acclimation occurred at the beginning bloom (R1) stage for both cultivars, but at the beginning seed (R5) stage only for Zhonghuang 13. No photosynthetic acclimation occurred at the beginning pod (R3) stage for either cultivar. Elevated [CO2] increased the number and size of starch grains in chloroplasts of the two cultivars. Soybean leaf senescence was accelerated under elevated [CO2], determined by unclear chloroplast membrane and blurred grana layer at the beginning bloom (R1) stage. The different photosynthesis response to elevated [CO2] between cultivars at the beginning seed (R5) contributed to the yield difference under elevated [CO2]. Elevated [CO2] significantly increased the yield of Zhonghuang 35 by 26% with the increased pod number of 31%, but not for Zhonghuang 13 without changes of pod number. We conclude that the occurrence of photosynthetic acclimation at the beginning seed (R5) stage for Zhonghuang 13 restricted the development of extra C sink under elevated [CO2], thereby limiting the response to elevated [CO2] for the seed yield of this cultivar., X. Y. Hao ... [et al.]., and Obsahuje bibliografii
Abscisic acid (ABA), an important chemical signal from roots, causes physiological changes in leaves, including stomata closure and photoprotection. Furthermore, endogenous ABA concentration in leaves and stomatal behavior vary with the species adapted to different water regimes. In this study, Ficus microcarpa, a hemiepiphyte, Salix warburgii, a hygrophyte, and Acacia confusa, a mesophyte, were used to elucidate the effects of leaf detachment on photosystem II (PSII) efficiency under osmotic- and high-light stresses. Results indicate that, under osmotic- and high-light stresses, PSII efficiency of the detached leaves was lower than that of the attached leaves for all three tree species, when compared at the same levels of stomatal resistance and leaf water potential. Exogenous ABA could mitigate the PSII efficiency decrease of detached F. microcarpa leaves under osmotic- and high-light stresses. Yet, the osmotic stress could raise endogenous ABA concentration in the attached, but not in the detached F. microcarpa leaves. In addition, partial root-zone drying exerted a significant effect on stomatal behavior but not on the water status of F. microcarpa leaves. These observations imply that the stronger ability of PSII in the attached leaves of F. microcarpa under osmoticand high-light stresses was probably due to the protective action of ABA from roots. On the contrary, endogenous ABA level of S. warburgii leaves was very low. In addition, partial root-zone drying produced no significant effect on its stomatal behavior. Therefore, PSII in attached S. warburgii leaves was possibly protected from the damaging effects of excess absorbed energy by signals other than ABA, which were transported from the roots. and J.-H. Weng ... [et al.].
Little is known about the response of trees to elevated ozone (O3) in the subtropical region of China, where ambient O3 concentrations are high enough to damage plants. In this study, pigment content, gas exchange and chlorophyll (Chl) a fluorescence in leaves of Liriodendron chinense (Hemsl.) Sarg seedlings, a deciduous broadleaf tree species native in subtropical regions, were investigated at 15, 40, and 58 days after O3 fumigation (DAF) at a concentration of 150 mm3 m-3 (E-O3). At the end of experiment, seedlings were harvested for biomass measurement. E-O3 caused visible injuries on the mature leaves e.g. necrotic patches and accelerated early defoliation. Relative to the charcoal-filtered air (CF) treatment, E-O3 significantly decreased shoot and root biomass, pigment content, light-saturated net photosynthesis (P Nsat), stomatal conductance (gs), maximum rate of carboxylation (Vcmax), photochemical quenching coefficient (qp) and effective quantum yield of PSII photochemistry (ΦPSII), and also caused a slight reduction in relative increase of basal diameter. Therefore, L. chinense can be assumed to be an O3-sensitive tree species, which will be threatened by increasing ambient O3 concentrations in China. and W. W. Zhang ... [et al.].
Several studies have found the photosynthetic integration in clonal plants to response to resource heterogeneity, while little is known how it responses to heterogeneity of UV-B radiation. In this study, the effects of heterogeneous UV-B radiation (280-315 nm) on gas exchange and chlorophyll fluorescence of a clonal plant Trifolium repens were evaluated. Pairs of connected and severed ramets of the stoloniferous herb T. repens were grown under the homogeneity (both of ramets received only natural background radiation, ca. 0.6 kJ m-2 d-1) and heterogeneity of UV-B radiation (one of the ramet received only natural background radiation and the other was exposed to supplemental UV-B radiation, 2.54 kJ m-2 d-1) for seven days. Stomatal conductance (g s), intercellular CO2 concentration (Ci) and transpiration rate (E) showed no significant differences in connected and severed ramets under homogenous and heterogeneous UV-B radiation, however, net photosynthetic rate (PN) and maximum photosynthetic rate (Pmax) of ramets suffered from supplemental increased UV-B radiation and that of its connected sister ramet decreased significantly. Moreover, additive UV-B radiation resulted in a notable decrease of the minimal fluorescence of dark-adapted state (F0), the electron transport rate (ETR) and photochemical quenching coefficient (qP) and an increase of nonphotochemical quenching (NPQ) under supplemental UV-B radiation, while physiological connection reverse the results. In all, UV-B stressed ramets could benefit from unstressed ramets by physiological integration in photosynthetic efficiency, and clonal plants are able to optimize the efficiency to maintain their presence in less favourable sites. and Q. Li ... [et al.].