a1_The study of plant responses to environmental stress factors is essential for management of plant systems and for anticipating their response to climate change. The main goal of this study was to determine morphological and physiological responses of Nothofagus obliqua and N. nervosa seedlings to light and temperature, two of the main stress factors acting in their current natural distribution in NW Patagonia. Responses to light were evaluated analyzing growth and survival, as well as morphological and physiological traits related to them, in seedlings subjected to three contrasting light conditions (full-sun conditions, 50% of sunlight and 20% of sunlight) during one growth season. Temperature photosynthetic responses were evaluated in seedlings subjected to temperature treatments between -5 and 40°C for 2 and 4 h. Growth rate and biomass partition were similar between light treatments in both species. High apical meristem damage and decreased photosynthetic capacity of preformed leaves were observed under full-sun conditions, suggesting that high light levels have a deleterious effect on plant yield. Both species produced neoformed leaves during the growing season with better photosynthetic capacity than preformed leaves under full sun conditions, contributing to plant acclimation. Almost no plasticity was observed in morphological traits in response to shade. Both species differed in optimum temperature for photosynthesis, with a wider temperature range at which high photosynthesis is maintained in N. obliqua. In both species the higher values of net photosynthetic rate were found at higher temperatures than the mean annual temperature of its current natural distribution range., a2_Under no water-stress conditions, future higher temperatures could increase carbon fixation of these species, with a little advantage of N. obliqua if temperature variance is high. Synergy effect of various environmental stress factors, particularly considering cultivation of these species outside their current natural distribution sites require further studies., S. A. Varela ... [et al.]., and Obsahuje bibliografii
Glaucium flavum is a biennial plant that bears a rosette of leaves, producing a flower stalk, bracteate monochasium, in its second year. The aims of this work were both to investigate the contribution of bracts to gas-exchange activities in this species and to compare this contribution to that of rosette leaves. In addition, we investigated the extent to which its responses can be explained by chloroplast ultrastructure, as well as the possible role of nutrient concentrations in the physiological responses of both leaf types. Gas exchange and plant characteristics regarding chlorophyll fluorescence were examined in a field experiment; we also determined leaf relative water content, tissue concentrations of photosynthetic pigments, chloroplast ultrastructure and nutrient contents. Although bracts indeed contributed to gas-exchange activities of G. flavum, rosette leaves showed higher values of net photosynthetic rate and stomatal conductance to CO2 for photosynthetic photon flux density above 200 μmol m-2 s-1. The incongruities in photosynthetic rates between bracts and leaves may be explained by the bigger chloroplasts of rosette leaves, which results in a larger membrane surface area. This agrees with the higher pigment concentrations and quantum efficiency of photosystem II values recorded as well for rosette leaves. On the other hand, bracts showed higher sodium concentrations, which could be a mechanism for salt tolerance of G. flavum. and S. Redondo-Gómez, E. Mateos-Naranjo, F. J. Moreno.
Drought stress triggered the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) both in non-Bt and Bt cotton with simultaneous production of antioxidant enzymes. And there was no significant difference between non-Bt and Bt cotton under drought stress. In contrast to this, we observed a significant reduction of Bt toxin proteins under 72 h of drought stress in Bt cotton. and P. Parimala, K. Muthuchelian
Since 2002, Silver buffaloberry (Shepherdia argentea) has been introduced from North America in order to improve the fragile ecological environment in western China. To elucidate the
salt-resistance mechanism of S. argentea, we conducted a test with two-year-old seedlings subjected to 0, 200, 400, and 600 mM NaCl solutions for 30 d. The results showed that significant salt-induced suppression of plant fresh mass (FM) and stem height of S. argentea seedlings occurred only at the highest salinity level (600 mM). Leaf number, plant dry mass (DM), and chlorophyll (Chl) content declined markedly at both 400 and 600 mM. Leaf area (LA) and leaf water potential (Ψw) continuously declined with the increase of salinity. There was also a progressive and evident decrease in net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) with the increase of salinity and time. The correlation analysis indicated that PN was positively correlated with gs at all salinity levels while correlated with intercellular CO2 concentration (Ci) only at moderate salinity levels (<600 mM). Based on the initial slope of the PN/Ci curves, the estimated carboxylation efficiency (CE) was strongly inhibited at 600 mM. We confirm that S. argentea is highly tolerant to salinity. Moreover, our results show that at moderate salinity levels, salt-induced inhibition of photosynthesis is mainly attributed to the stomatal efficient closure predetermined by a low water potential in leaves; while at the high salinity levels, the inhibition is mainly due to the suppression of chloroplast capacity to fix CO2 caused by the serious decline in both CE and Chl contents. and J. Qin ... [et al.].
The present study was conducted to examine changes in photosynthetic pigment composition and functional state of the thylakoid membranes during the individual steps of preparation of samples that are intended for a separation of pigmentprotein complexes by nondenaturing polyacrylamide gel electrophoresis. The thylakoid membranes were isolated from barley leaves (Hordeum vulgare L.) grown under low irradiance (50 μmol m-2 s-1). Functional state of the thylakoid membrane preparations was evaluated by determination of the maximal photochemical efficiency of photosystem (PS) II (FV/FM) and by analysis of excitation and emission spectra of chlorophyll a (Chl a) fluorescence at 77 K. All measurements were done at three phases of preparation of the samples: (1) in the suspensions of osmotically-shocked broken chloroplasts, (2) thylakoid membranes in extraction buffer containing Tris, glycine, and glycerol and (3) thylakoid membranes solubilized with a detergent decyl-β-D-maltosid. FV/FM was reduced from 0.815 in the first step to 0.723 in the second step and to values close to zero in solubilized membranes. Pigment composition was not pronouncedly changed during preparation of the thylakoid membrane samples. Isolation of thylakoid membranes affected the efficiency of excitation energy transfer within PSII complexes only slightly. Emission and excitation fluorescence spectra of the solubilized membranes resemble spectra of trimers of PSII light-harvesting complexes (LHCII). Despite a disrupted excitation energy transfer from LHCII to PSII antenna core in solubilized membranes, energy transfer from Chl b and carotenoids to emission forms of Chl a within LHCII trimers remained effective. and V. Karlický ... [et al.].
Botanical knowledge can be directly applied especially in nature conservation and ecological restoration. Extensive field experience, good knowledge of plants and thorough theoretical background are important prerequisites. Some applications are also possible in the agricultural, forestry, pharmacy, food and textile industries. and Karel Prach.
Predace semen je strategie, kdy živočich za účelem obživy napadá a zničí mnoho semen rostlin. V tomto krátkém sdělení přibližujeme aktuální poznatky o střevlíkovitých predátorech semen po uvolnění z rostliny. Střevlíkovití brouci zpravidla preferují semena odpovídající velikosti jejich těla, výběr druhů preferovaných semen je však pro daný druh střevlíka typický a během sezony se nemění. Během sezony značně kolísá množství spotřebovaných semen, za optimálních podmínek vysoké hojnosti a aktivity brouků může být denně zničeno až 1000 semen na ploše 1 m2. Střevlíkovití přitom preferují semena hvězdnicovitých rostlin (Asteraceae), jako jsou pampelišky (Taraxacum sect. Ruderalia) nebo pcháč oset (Cirsium arvense), dále semena brukvovitých (Brassicaceae), jako je kokoška pastuší tobolka (Capsella bursa-pastoris). Střevlíkovití tak přispívají k udržení biologické rovnováhy., Seed predation is a strategy where an animal attacks and kills the seeds of plants. In this contribution we report on the latest knowledge on carabid beetles (Carabidae) feeding on seeds after dispersal from the plant. In general, carabid beetles prefer seeds of appropriate size to their body size, but the selection of seed species is species-specific and remains stable across the season. The consumption considerably varies throughout the year, and under optimal conditions the carabid beetles may destroy up to 1000 seeds per 1 m2. Carabid beetles prefer seeds of Asteraceae, such as Dandelion (Taraxacum) or Canadian Thistle (Cirsium arvense), and of Brassicaceae, such as the Shepherd’s Purse (Capsella bursa-pastoris). In this way the carabid beetles contribute to the balance in ecosystems., and Pavel Saska, Alois Honěk, Zdenka Martinková.