Morphology of mature larvae of two Central European species of Scydmaenus Latreille is described and illustrated: S. (s. str.) tarsatus Müller & Kunze and S. (Cholerus) hellwigii (Herbst). Inaccuracies in previous descriptions of S. tarsatus are discussed and the following combination of characters is defined as diagnostic for Scydmaenus: epicranial sutures reaching posteromedian margins of antennal insertions; presence of a single pair of stemmata and epicranial supraantennal pits; anterior row of subtriangular teeth on epipharynx; mandibles falciform and without mesal teeth; antennomere 3 rudimentary; antennal sensory appendage subconical and asymmetrical; maxilla with galea and lacinia; labium strongly constricted between mentum and prementum; thoracic tergites undivided along midline; head capsule, thoracic tergites, laterotergites and abdominal segments except sternite 1 densely setose; thoracic sternites and abdominal sternite1 largely asetose; and lack of urogomphi. We also describe the feeding behaviour of immature S. tarsatus and demonstrate for the first time that Scydmaeninae larvae can feed on live springtails and not armoured mites. In the introduction we provide a summary of the literature on all hitherto known preimaginal stages of Scydmaeninae., Pawel Jaloszynski, Aleksandra Kilian., and Obsahuje seznam literatury
In Europe there are only a few species of the syrphid fly Microdon, which live in the nests of various genera of ants. For most of these rare flies, details of their biology, larval behaviour and relationships with their hosts are still not yet well known. In this paper we present data on the life cycle, feeding behaviour and growth pattern of Microdon myrmicae, a social parasite of Myrmica ants and compare it with two species of Maculinea butterflies similarly parasitizing Myrmica ant colonies. M. myrmicae has three larval instars and overwinters as a third instar. Eggs and 1st instar larvae are ignored by ants, which indicate that they are “chemically insignificant”. 2nd and 3rd instar larvae feed on small ant brood. M.myrmicae larvae grow rapidly from May to July and later in the year the host colony only serves as shelter for overwintering. Like Maculinea alcon, larvae of M. myrmicae are numerous in Myrmica nests and more numerous than those of Maculinea teleius. Since the larvae of Microdon feed on an abundance of young ant brood, they experience low level of scramble competition and although many may develop in an ant’s nest they have probably little effect on host colony fitness., Magdalena Witek ... [et al.]., and Obsahuje seznam literatury
This paper describes previously unreported lateral cuticle splits occurring during the moulting of larvae of the leaf-miners Pachyschelus laevigatus (Say, 1839) (Coleoptera: Buprestidae) and Cameraria sp. (Lepidoptera: Gracillariidae). In these species the cuticle does not split dorsally during the larval/larval moults as in most insects, but laterally, thus permitting the larva to leave its exuviae sideways rather than vertically. This previously overlooked phenomenon is hypothesized to have evolved independently in both taxa and is an adaptation to life in the vertically limited space of their mines and, therefore, might be found in other organisms confined to similar conditions. The exuvial split in the larva to pupa moult of Cameraria sp. taking place inside a relatively tick and firm cocoon is, however, of the regular dorso-medial type, and, therefore, two different successive types of moult occur within a single ontogenesis. For comparative purposes the common dorsal exuvial split is described and illustrated for the leaf-mining larvae of Profenusa alumna (Hymenoptera: Tenthredinidae), Sumitrosis rosea (Coleoptera: Chrysomelidae) and the free-living Satonius fui (Coleoptera: Torridincolidae)., Vasily V. Grebennikov., and Obsahuje seznam literatury
Accurate Batesian mimicry is known to impose constraints on some traits of the mimic, such as foraging or reproductive behaviour. It is not known whether life-history traits of inaccurate Batesian mimics are constrained as well. We studied selected life-history traits of three spider species, Liophrurillus flavitarsis, Phrurolithus festivus (both Corinnidae), and Micaria sociabilis (Gnaphosidae), that are inaccurate mimics of ants. Namely, we were interested in how myrmecomorphy (ant-like resemblance) constrains their circadian activity, trophic niche and reproductive behaviour. The spiders were found to have diurnal activity like their models, whereas their close relatives have nocturnal activity. The three mimics do not catch ants, nor do they use food resources of ants, but catch various tiny invertebrates that occur in the vicinity of their models. Their trophic niche seems to be constrained by occurrence among ants. Absence of courtship and long lasting copulation, in a position that does not provide protective resemblance, do not seem to be constrained by mimicry in the three species. Comparative analysis of fecundity in mimetic and non-mimetic spiders showed that clutch size is also not constrained. Unlike in accurate mimics, life-history traits of inaccurate myrmecomorphs appear not to be constrained. and Stano Pekár, Martin Jarab.
Competition is a major force organizing ant communities and results in co-occurring species evolving different strategies for foraging and use of space. Territorial species, as top dominants exclude each other, while shaping the local ant communities both qualitatively and quantitatively. In this study we examined how two territorial species, Formica polyctena and Lasius fuliginosus, can coexist in adjacent territories over long periods of time, and whether they affect co-occurring species of ants in different ways. Field observations in the absence and in the presence of baits were carried out around a L. fuliginosus nest complex surrounded by a polydomous F. polyctena colony in S Finland in 2007–2009. Both species controlled their territories, but were affected by changes in the abundance of the other species and the distance from L. fuliginosus’ main nest. They did not have the same effect on the subordinate species in the absence of baits, but the abundance of Myrmica spp. recorded at baits was negatively affected by both of the territorial species. The preferences of the different species for the artificial food sources differed: L. fuliginosus and F. polyctena preferred tuna to honey and Myrmica spp. honey to tuna. More individuals of the subordinate species were recorded in the territory of F. polyctena than of L. fuliginosus, although conflicts with this territorial species were also recorded. During the three years of the study almost no overlaps in the territories of the two territorial species were recorded, and there were mostly minor shifts in the boundaries of the territories. Differences between the two territorial species in their use of space and competitive effects ensured their coexistence at this particular site in Finland., Wojciech Czechowski ... [et al.]., and Obsahuje seznam literatury
Males in many beetles show horn or mandible dimorphism. The stag beetle Dorcus rectus was assumed to have dimorphic males, but in this species there are not two but three visually distinct mandibular phenotypes. The aim of this study is to determine if the three phenotypes represent an allometric trimorphism in this species by studying the scaling relationship between body length and mandible length in 148 adult males and 31 adult females. The relationship was fitted using the following four statistical models; a simple line, a logistic curve, a continuous segmented line and a discontinuous line. The best-fitting model for the males was a discontinuous line with two break points and that for the females a simple line. The male data was also well fitted by a logistic curve. The discontinuous linear model divided the males into three groups that were in good agreement with the three phenotypes. These results suggest that a subtle allometric trimorphism possibly exists in males of this species. Small males of this species have no distinct teeth on their mandibles, whereas small males of D. striatipennis and D. curvidens, which are closely related to D. rectus, have a pair of distinct teeth on their mandibles. The phylogenetic relationship of these Dorcus species suggests that the trimorphism in D. rectus may have arisen through the loss of teeth in small males., Yutaka Iguchi., and Obsahuje seznam literatury
In view of the extremely high metabolic rates involved, insect flight offers a fascinating model system for studying metabolism during exercise, including its regulation by metabolic neurohormones. In our laboratory the African migratory locust, Locusta migratoria, well-known for its long-distance flights, is used as an internationally recognized model insect. The insect is mass-reared under controlled conditions; its size permits convenient handling in vivo and in vitro, while flight activity can be easily evoked. In addition, research on this pest insect may be of economical importance.
A survey of the energy metabolism during locust flight is presented in Fig. 1. Flight activity stimulates the neurosecretory adipokinetic cells in the glandular lobes of the corpus cardiacum, a neuroendocrine gland connected with the insect brain, to release peptide neurohormones, the adipokinetic hormones (AKHs). The target for these hormones is the fat body. Via signal transduction processes, the action of the hormones ultimately results in the mobilization of both carbohydrate and lipid reserves as fuels for flight. Carbohydrate (trehalose) is mobilized from glycogen reserves, implying hormonal activation of the key enzyme, fat body glycogen phosphorylase, by phosphorylation. Similarly, on the lipid side, sn-1,2-diacylglycerol (DAG) is mobilized from stored triacylglycerol (TAG), by hormonal activation of the fat body TAG lipase. The carbohydrate and lipid substrates are transported in the hemolymph to the contracting flight muscles. Carbohydrate provides most of the energy for the initial period of flight, whereas at a later stage, lipid substrate in the blood is increased and gradually takes over. The transport of DAG requires specific lipoprotein carriers (lipophorins) which differ in several respects from the lipoproteins in mammals, and act as a lipid shuttle.
This review is focused on three interrelated topics, covering recent data on the biosynthesis and release of the AKHs, their signal transduction mechanisms in the fat body cells, and the changes in the lipophorin system induced by the AKHs during flight., Dick J. Van Der Horst, Wil J.A. Van Marrewijk, Henk G.B. Vullings, Jacques H.B. Diederen, and Lit
Several studies have demonstrated that the invasive ladybird Harmonia axyridis is a strong intra-guild predator of native species of ladybird. Laboratory studies have shown that H. axyridis can be an intra-guild predator of aphid predators other than coccinellids, including the hoverfly Episyrphus balteatus and lacewing Chrysoperla carnea. However, little is known about the effect of intra-guild predation (IGP) by H. axyridis on hoverfly and lacewing populations in the field. In the present study molecular analyses were used to detect the DNA of E. balteatus and C. carnea in the gut contents of H. axyridis. Primers for the syrphid and chrysopid prey were designed and feeding experiments performed to determine how long prey DNA remains detectable in the guts of this ladybird. DNA detection was influenced by the life stage of the predator and species of prey. Meal size did not affect detection time, except when fourth instar individuals of H. axyridis were fed 10 eggs or one second instar of C. carnea. Predator weight, sex and morpho-type (melanic/non-melanic) did not influence DNA detection. The half-life of the time for which the DNA of the prey remained detectable was calculated for each predator-prey combination, and ranged from 8.9 to 52.4 h. This method can be used to study the ecological importance of IGP by H. axyridis on aphidophagous predators other than coccinellids in the field., Brecht Ingels ... [et al.]., and Obsahuje seznam literatury
The aim of the present work was to identify cryptic species in the Anopheles maculipennis and Culex pipiens complexes and to study the genetic structure of the dominant mosquito species Ochlerotatus caspius (Diptera: Culicidae) in the Province of Alessandria close to the vast area untreated rice fields in Piedmont, NW Italy. With the help of PCR-RFLP analysis, four members of the Anopheles maculipennis complex were identified: A. messeae, A. maculipennis, A. sacharovi and A. atroparvus. Only C. pipiens f. molestus was identified in 11 habitats studied in Piedmont. Partial sequences of the cytochrome c oxidase subunit 1 (COI) mitochondrial gene and the second internal transcribed spacer (ITS2) of nuclear ribosomal RNA genes for Italian O. caspius are reported here for the first time. The results indicate that this species diverged from Iranian representatives of this species about one million years ago. The great diversity of mosquito species in Piedmont considerably increases the risk of vector-borne diseases. and Asghar TALBALAGHI, Elena SHAIKEVICH.