Determining the season of death by means of the composition of the families of insects infesting carrion is rarely attempted in forensic studies and has never been statistically modelled. For this reason, a baseline-category logit model is proposed for predicting the season of death as a function of whether the area where the carcass was exposed is sunlit or shaded and of the relative abundance of particular families of carrion insects (Calliphoridae, Fanniidae, Sarcophagidae, and Formicidae). The field study was conducted using rodent carcasses (20-252 g) in an urban forest in southeastern Brazil. Four carcasses (2 in a sunlit and 2 in a shaded area) were placed simultaneously at the study site, twice during each season from August 2003 through June 2004. The feasibility of the model, measured in terms of overall accuracy, is 64 ± 14%. It is likely the proposed model will assist forensic teams in predicting the season of death in tropical ecosystems, without the need of identifying the species of specimens or the remains of carrion insects. and Thiago de Carvalho Moretti, Vinícius Bonato, Wesley Augusto Conde Godoy.
The blood-sucking bug Rhodnius prolixus is the main vector of Chagas Disease in Colombia, Venezuela and several countries in Central America. Nitric oxide (NO) is a ubiquitous gaseous molecule present in most types of cell and participates in the olfactory pathway of insects. In this work, nitroso-acetyl-cysteine (SNAC), a nitric oxide donor, was topically applied to the antennae of fifth instar nymphs of R. prolixus. After SNAC treatment, these insects showed a dose-dependent reluctance to feed when provided with a living pigeon as the food source (ED50 = 5.2 µg/insect). However, there was no reluctance to feed when db-cGMP was applied to the antennae of nymphs. In another experiment, insects that had their antennae treated with SNAC were less attracted than the control group to a CO2 source. A possible role of NO in the olfactory pathway of R. prolixus is discussed. and Valeria Sfara, Eduardo N. Zerba, Raúl A. Alzogaray.
Microsatellites are the most common markers used in population and conservation genetic studies. However, their isolation is laborious and expensive. In some taxa, such as Lepidoptera, it is particularly difficult to isolate microsatellite markers due to the high similarity of the flanking regions of different loci and the presence of null alleles. Here we isolated microsatellites of the endangered butterfly Boloria aquilonaris using 454 GS-FLX Titanium pyro-sequences of biotin enriched DNA libraries and tested the success of cross-amplification on the sister-species B. eunomia. Fifteen polymorphic microsatellite loci were isolated in B. aquilonaris using initially 101 stringently designed primer pairs. Unlike in many other studies of microsatellite isolation in Lepidoptera, few null alleles were detected and only at very low frequencies. Additionally, the raw data set can still be used for the isolation of other microsatellite loci. None of the selected polymorphic loci for B. aquilonaris gave clear banding patterns for B. eunomia, although about 15 other loci gave promising banding patterns for the latter species. Low intra- and inter-specific transferability of developed markers in this study also lends support to the hypothesis that the evolution of the genome of Lepidoptera is dissimilar from that of other organisms., Sofie Vandewoestijne, Camille Turlure, Michel Baguette., and Obsahuje seznam literatury
Body size is one of the most investigated traits in studies of sexual selection in fruit flies of the genus Drosophila. In D. melanogaster, size has often been correlated with male mating success, i.e. larger males were more successful in achieving copulations both in laboratory and field conditions. In the present paper, we investigated if male body size is a sexually selected trait in competitive conditions, when full-sibs that developed at two different temperatures (18 and 25°C) competed for females. Males developed at a lower temperature were significantly larger than those reared at a higher temperature, but they were not more successful in mating. We conclude that when body size is significantly induced by temperature variability, it is not correlated with male mating success., Sofija Pavkovic-Lučic, Vladimir Kekic., and Obsahuje seznam literatury
The Asian ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is regarded as an invasive species in many parts of the world. In a previous study we hypothesised that H. axyridis enters diapause at the end of October and then shifts to a quiescent state in December in northwestern Europe. In the present study we test this idea of a short, early period of diapause by sampling beetles from their hibernation sites immediately after their migratory flights in October, subsequently keeping them in outdoor cages, and then, after certain time-intervals, measuring the pre-oviposition time under optimal egg-laying laboratory conditions at 25°C. We did this at both short (12L) and long (16L) photoperiods, since a photoperiodic response is an indicator of true diapause, rather than quiescence. A significant, albeit small, difference in pre-oviposition period between the two photoperiods, which disappears in December, corroborates our earlier hypothesis that the ladybirds are in a state of diapause until mid-December. Compared with that of native ladybirds the diapause of H. axyridis generally is relatively short and weak; moreover, it appears to have become shorter over the last decade. This flexibility in diapausing behaviour may be an important factor that contributes to the invasive success of H. axyridis., C. Lidwien Raak-Van Den Berg ... [et al.]., and Obsahuje seynam literatury
The size and fecundity of Hemiberlesia lataniae (Signoret) (Hemiptera: Diaspididae) on partially resistant and susceptible kiwifruit (Actinidia spp.) varieties was measured. The size ratio of mature H. lataniae grown on a partially resistant genotype, compared with those on a susceptible genotype, was 0.67-0.51 for 2nd instar exuviae area, 0.32 for adult body area and 0.18 for estimated body volume. The fertility ratio was 0.1, but the pre-oviposition period and the size of the crawlers were the same. Diaspidid scale insects' unusual ability to continue growing after the final moult appears to be a key feature allowing these insects to show extreme size plasticity while retaining the ability to reproduce even when very small. These observations challenge current theories of insect development that postulate the need to achieve a critical weight threshold before the final moult. We suggest that this strategy may have assisted the evolution of polyphagy within the Diaspididae. and M. Garry HILL, Rosa C. HENDERSON, Nicola A. MAUCHLINE.
The use of light traps for controlling insect pests is restricted since they kill both pests and beneficial insects. It may be a possible to reduce the numbers of beneficial insects trapped by adjusting nightly trapping time based on differences recorded in the timing of the nocturnal flight peaks of target pests and beneficials. To test this, insects were collected hourly over night using black light traps at three locations in China from 2003 to 2005. Groups of lepidopteran and coleopteran pests were selected as the target pests that we would control by trapping and groups of beneficial predatory insects the catches of which needed to be reduced. The highest numbers of Coleoptera were caught between 20:00 and 22:00 h and of most Lepidoptera between 02:00 and 04:00 h. The hourly numbers of predatory insects caught by light traps were evenly distributed throughout the night. A model was developed to describe the relationships between the cumulative proportions of insects caught and time of night. The model accurately describes the flight activity of insects that were mainly caught before midnight, after midnight and evenly throughout a night by using different parameters for the three different insect groups. A beneficial-friendly trapping strategy was developed to reduce the numbers of beneficial insects trapped, which was based on differences in the nocturnal flight activity of pests and beneficial insects and validated by a field study in Shandong province. Results show that this trapping strategy reduced the number of beneficial insects caught by 46% and the electricity consumption by 50% compared to the traditional strategy. Thus this strategy is more beneficial-friendly than the traditional trapping strategy for controlling pests., Gang Ma, Chun-Sen Ma., and Obsahuje seznam literatury
Plant chemical composition is an important determinant of host plant-insect interactions. For many insects sugars are the main factors determining the acceptability of a plant. This study investigated changes in plant chemical composition and differences in sugar composition of different host plants induced by the feeding of Coccus hesperidum L. (Hemiptera: Sternorrhyncha: Coccoidea). Present in plant extracts and honeydew there were three monosaccharide sugars: glucose, fructose and arabinose, and one disaccharide - sucrose. Arabinose was only found in extracts of Ficus benjamina plants. The sugar content of the honeydew was greater than in the extracts of control plants and lower than that in the extracts of infested plants. The honeydew collected from C. hesperidum feeding on the three plant species differed significantly in sugar content. Extracts of coccid infested plants of the three species used in this study contained more sugar than the un-infested control plants. The results show that honeydew composition of scale insects differ and the differences reflect the chemical composition of the host plants. and Katarzyna Golan, Agnieszka Najda.
The pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae), is a well-studied species in terms of its colour polymorphism, where it occurs as two distinct colour morphs, red and green. It is proposed that the occurrence and maintenance of this polymorphism is an adaptive response to environmental factors, in particular natural enemies and host plant quality. We hypothesized that these adaptations are directly mirrored in the energy reserves accumulated by the different colour morphs during their pre-adult stages and reflect their specialization for particular ecological roles. We quantitatively measured the different energy reserves of red and green pea aphids and found that the total energy reserves of these morphs did not differ. Interestingly, these reserves were made up of different components in the red and green colour morphs. There was a higher percentage content of water-soluble carbohydrates and lipids in the red clones and higher percentage content of protein in green clones. These finding are in accordance with green clones being more fecund than red ones and needing more protein for reproduction than red clones, which produce more winged offspring when crowded or in response to the presence of natural enemies and so, need more lipids and carbohydrates to fuel their walking and flight. Apparently, different colour morphs are physiologically specialized to adjust their energy reserves in relation to their specific ecological adaptations and maximize their fitness in terms of dispersal, reproduction, defense and survival., Seyed Mohammad Ahsaei ... []., and Obsahuje seznam literatury