Hmyzí hormonální soustava se skládá z několika typů žláz produkujících tři různé druhy hormonů – ekdysteroidy, juvenilní hormony a peptidické neurohormony. Struktura, funkční koordinace a vzájemné vztahy v této soustavě představují dobře organizovaný řídicí systém, který v zásadě pracuje stejně jako hormonální soustava obratlovců: řídí prakticky všechny životní projevy hmyzu. Jedna skupina hmyzích metabolických neurohormonů – adipokinetické hormony – hraje důležitou roli v odpovědi organismu na stresové podmínky. Tyto hormony zajišťují mobilizaci energetických zdrojů, stimulují pohybovou aktivitu, zvyšují činnost srdce, aktivují imunitní systém a nedůležité procesy odsouvají na pozdější dobu. Touto koordinovanou činností umožňují hmyzímu organismu vyrovnávat se s nepříznivými podmínkami vnějšího prostředí a podílet se tak na udržování homeostázy vnitřního prostředí., The insect hormonal system consists of several types of endocrine glands which produce three different hormones – ecdysteroids, juvenile hormones and peptidic neurohormones. The structure, functional coordination and mutual relationships within the system are a well organised control system resembling the hormonal system of vertebrates: it controls practically all aspects of insect life. One group of insect metabolic neurohormones called adipokinetic hormones plays an important role in the defence of the insect organism against stress. Those hormones control energy mobilization, stimulate locomotory activity and the heart beat, activate the immune system and postpone less important processes for later. That sophisticated system helps the insect organism to cope with negative environmental conditions and to retain the body homeostasis., and Dalibor Kodrík.
The influence of host intrapatch spatial distribution on parasitoid host acceptance behavior was investigated with Trichogramma principium parasitizing eggs of grain moth, Sitotroga cerealella. Single females were placed in Petri dishes, each containing 60 host eggs arranged either as a compact patch or partitioned into 60 or 12 clusters each consisting of 1 or 5 eggs, respectively. Partitioned patches provoked parasitization more often than compact patches. The percentage of ovipositing females (i.e., females parasitizing at least one of 60 host eggs) increased with the number of clusters, while it was independent of the intercluster distance over intervals of 2.5-15 mm. The mean number of eggs parasitized by ovipositing females during 48 h was almost independent of the host egg spatial pattern. As a result, the rate of parasitization was higher when the hosts were sparsely distributed within a patch than when they were aggregated., Nataliya D. Voinovich, Taisiya Ya. Umarova, Sergey Ya. Reznik, and Lit
We investigated the effects of genetic differences and host plant density on population development of the rose-grain aphid Sitobion avenae (F.) (Sternorrhyncha: Aphididae) in winter wheat stands. Aphid numbers on ears were recorded on 11 cultivars (6 years) and on plots where crop density was varied by thinning (12 years). Crop density significantly affected whole plant, tiller and ear mass, number of tillers, and leaf area and chlorophyll content. The duration and rate of aphid population growth, and the maximum numbers of aphids were ascertained by weekly counts. Maximum abundances increased with the length of time available for the growth of aphid populations while the rate of population growth was less important. Variation of maximum numbers of S. avenae on different cultivars was not significant, probably due to the small variation in the period available for the development of aphid populations. By contrast, there was a significant Variation of aphid performance associated with host plant density. Aphid populations on solitary plants persisted longer and became more abundant than in dense stands. The prolonged survival of aphid populations was probably caused by an extended period of tillering and lower average age of tillers of solitary plants. There was large annual variation in aphid abundance. It is likely that modifications of host plant development caused by differences in winter weather may contribute to this variation., Alois Honěk, Zdenka Martinková, and Lit