This package contains data sets for development and testing of machine translation of medical search short queries between Czech, English, French, and German. The queries come from general public and medical experts. and This work was supported by the EU FP7 project Khresmoi (European Comission contract No. 257528). The language resources are distributed by the LINDAT/Clarin project of the Ministry of Education, Youth and Sports of the Czech Republic (project no. LM2010013).
We thank Health on the Net Foundation for granting the license for the English general public queries, TRIP database for granting the license for the English medical expert queries, and three anonymous translators and three medical experts for translating amd revising the data.
This package contains data sets for development and testing of machine translation of medical queries between Czech, English, French, German, Hungarian, Polish, Spanish ans Swedish. The queries come from general public and medical experts. This is version 2.0 extending the previous version by adding Hungarian, Polish, Spanish, and Swedish translations.
This package contains data sets for development and testing of machine translation of sentences from summaries of medical articles between Czech, English, French, and German. and This work was supported by the EU FP7 project Khresmoi (European Comission contract No. 257528). The language resources are distributed by the LINDAT/Clarin project of the Ministry of Education, Youth and Sports of the Czech Republic (project no. LM2010013). We thank all the data providers and copyright holders for providing the source data and anonymous experts for translating the sentences.
This package contains data sets for development (Section dev) and testing (Section test) of machine translation of sentences from summaries of medical articles between Czech, English, French, German, Hungarian, Polish, Spanish
and Swedish. Version 2.0 extends the previous version by adding Hungarian, Polish, Spanish, and Swedish translations.
"Large Scale Colloquial Persian Dataset" (LSCP) is hierarchically organized in asemantic taxonomy that focuses on multi-task informal Persian language understanding as a comprehensive problem. LSCP includes 120M sentences from 27M casual Persian tweets with its dependency relations in syntactic annotation, Part-of-speech tags, sentiment polarity and automatic translation of original Persian sentences in five different languages (EN, CS, DE, IT, HI).
Source code of the LINDAT Translation service frontend. The service provides a UI and a simple rest api that accesses machine translation models served by tensorflow serving.
The most recent version of the code is available at https://github.com/ufal/lindat_translation.
This toolkit comprises the tools and supporting scripts for unsupervised induction of dependency trees from raw texts or texts with already assigned part-of-speech tags. There are also scripts for simple machine translation based on unsupervised parsing and scripts for minimally supervised parsing into Universal-Dependencies style.
Document-level testsuite for evaluation of gender translation consistency.
Our Document-Level test set consists of selected English documents from the WMT21 newstest annotated with gender information. Czech unnanotated references are also added for convenience.
We semi-automatically annotated person names and pronouns to identify the gender of these elements as well as coreferences.
Our proposed annotation consists of three elements: (1) an ID, (2) an element class, and (3) gender.
The ID identifies a person's name and its occurrences (name and pronouns).
The element class identifies whether the tag refers to a name or a pronoun.
Finally, the gender information defines whether the element is masculine or feminine.
We performed a series of NLP techniques to automatically identify person names and coreferences.
This initial process resulted in a set containing 45 documents to be manually annotated.
Thus, we started a manual annotation of these documents to make sure they are correctly tagged.
See README.md for more details.
This data set contains four types of manual annotation of translation quality, focusing on the comparison of human and machine translation quality (aka human-parity). The machine translation system used is English-Czech CUNI Transformer (CUBBITT). The annotations distinguish adequacy, fluency and overall quality. One of the types is Translation Turing test - detecting whether the annotators can distinguish human from machine translation.
All the sentences are taken from the English-Czech test set newstest2018 (WMT2018 News translation shared task www.statmt.org/wmt18/translation-task.html), but only from the half with originally English sentences translated to Czech by a professional agency.
Manual classification of errors of Czech-Slovak translation according to the classification introduced by Vilar et al. [1]. First 50 sentences from WMT 2010 test set were translated by 5 MT systems (Česílko, Česílko2, Google Translate and two Moses setups) and MT errors were manually marked and classified. Classification was applied in MT systems comparison [3]. Reference translation is included.
References:
[1] David Vilar, Jia Xu, Luis Fernando D’Haro and Hermann Ney. Error Analysis of Machine Translation Output. In International Conference on Language Resources and Evaluation, pages 697-702. Genoa, Italy, May 2006.
[2] http://matrix.statmt.org/test_sets/list
[3] Ondřej Bojar, Petra Galuščáková, and Miroslav Týnovský. Evaluating Quality of Machine Translation from Czech to Slovak. In Markéta Lopatková, editor, Information Technologies - Applications and Theory, pages 3-9, September 2011 and This work has been supported by the grants Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic)