The January 2018 release of the ParaCrawl is the first version of the corpus. It contains parallel corpora for 11 languages paired with English, crawled from a large number of web sites. The selection of websites is based on CommonCrawl, but ParaCrawl is extracted from a brand new crawl which has much higher coverage of these selected websites than CommonCrawl. Since the data is fairly raw, it is released with two quality metrics that can be used for corpus filtering. An official "clean" version of each corpus uses one of the metrics. For more details and raw data download please visit: http://paracrawl.eu/releases.html
Statistical component of Chimera, a state-of-the-art MT system. and Project DF12P01OVV022 of the Ministry of Culture of the Czech Republic (NAKI -- Amalach).
The dataset used for the Ptakopět experiment on outbound machine translation. It consists of screenshots of web forms with user queries entered. The queries are available also in a text form. The dataset comprises two language versions: English and Czech. Whereas the English version has been fully post-processed (screenshots cropped, queries within the screenshots highlighted, dataset split based on its quality etc.), the Czech version is raw as it was collected by the annotators.
Post-editing and MQM annotations produced by the QT21 project. As described in
@InProceedings{specia-etal_MTSummit:2017,
author = {Specia, Lucia and Kim Harris and Frédéric Blain and Aljoscha Burchardt and Viviven Macketanz and Inguna Skadiņa and Matteo Negri and and Marco Turchi},
title = {Translation Quality and Productivity: A Study on Rich Morphology Languages},
booktitle = {Proceedings of Machine Translation Summit XVI},
year = {2017},
pages = {55--71},
address = {Nagoya, Japan},
}
This submission contains Dockerfile for creating a Docker image with compiled Tensor2tensor backend with compatible (TensorFlow Serving) models available in the Lindat Translation service (https://lindat.mff.cuni.cz/services/transformer/). Additionally, the submission contains a web frontend for simple in-browser access to the dockerized backend service.
Tensor2Tensor (https://github.com/tensorflow/tensor2tensor) is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
Test data for the WMT 2017 Automatic post-editing task (the same used for the Sentence-level Quality Estimation task). They consist in German-English triplets (source and target) belonging to the pharmacological domain and already tokenized. Test set contains 2,000 pairs. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Test data for the WMT 2017 Automatic post-editing task (the same used for the Sentence-level Quality Estimation task). They consist in 2,000 English-German pairs (source and target) belonging to the IT domain and already tokenized. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Test data for the WMT 2018 Automatic post-editing task. They consist in English-German pairs (source and target) belonging to the information technology domain and already tokenized. Test set contains 1,023 pairs. A neural machine translation system has been used to generate the target segments. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Test data for the WMT 2018 Automatic post-editing task. They consist in English-German pairs (source and target) belonging to the information technology domain and already tokenized. Test set contains 2,000 pairs. A phrase-based machine translation system has been used to generate the target segments. This test set is sampled from the same dataset used for the 2016 and 2017 APE shared task editions. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Data from a questionnaire survey conducted from 2022-08-25 to 2022-11-15 and exploring the use of machine translation by Ukrainian refugees in the Czech Republic. The presented spreadsheet contains minimally processed data exported from the two questionnaires that were created in Google Forms in the Ukrainian and the Russian language. The links to these questionnaires were distributed by three methods: direct email to particular refugees whose contact details the authors obtained while volunteering; through a non-profit organisation helping refugees (Vesna women’s education institution) and on social networks by posting links to the survey in groups associating the Ukrainian community across Czech regions and towns.
Since we asked potential respondents to spread the questionnaire further, we could not prevent it from reaching Ukrainians who had arrived in Czechia previously, or received temporary protection in other countries. Due to this fact, the textual answers to the question 1.5 "Which country are you in right now?" were replaced in the dataset by numbers (1 for the Czech Republic, 2 for other countries) in order for us to be able to separate the data of respondents not located in the Czech Republic, which were irrelevant for our survey. Also, in this version of the dataset, the textual answers to the question 1.6 "How many months have you been to this country?" were replaced by numbers, so that we could separate the data of respondents who arrived in the Czech Republic in February 2022 or later from the other data (0 for those staying in Czechia before February 2022, 1 for those staying in Czechia since February 2022 or later, 2 for those staying in other countries).