The effects of postharvest pretreatments on vase life, keeping quality and carbohydrate concentrations in cut sweet pea (Lathyrus odoratus L.) flowers were investigated. Compared to the control, all treatments promoted floret quality and extended longevity. The cut flowers held in the solution containing sucrose + 8-hydroxyquinoline (Suc+HQS) was more effective in promoting absorption rate, achieved greater maximum fresh mass, had better water balance for a longer period, extended the vase life (up to 17 d), and delayed degradation of chlorophylls. The same treatment also enhanced the concentration of soluble carbohydrates in the petals and stems and leaf chlorophyll (Chl) content, whereas it was lowest in silver thiosulphate (STS) treatment. However, concentrations of anthocyanin in the petals were higher for treatment with sucrose or STS plus sucrose than in control or STS alone treatments. Our results suggest that pulse treatment with HQS plus sucrose for 12 h is the most effective for improving pigmentation and use as a commercial cut flower preservative solution to delay flower senescence, enhance quality, and prolong the vase life of sweet pea. The results also showed that soluble carbohydrate concentration in petals and stems is an important factor in determining the vase life of sweet pea flowers., K. M. Elhindi., and Obsahuje bibliografii
The influence of arbuscular mycorrhizal (AM) fungus Glomus deserticola (Trappe and John) on plant growth, nutrition, flower yield, water relations, chlorophyll (Chl) contents and water-use efficiency (WUE) of snapdragon (Antirhinum majus cv. butterfly) plants were studied in potted culture under well-watered (WW) and water-stress (WS) conditions. The imposed water stress condition significantly reduced all growth parameters, nutrient contents, flower yield, water relations, and Chl pigment content and increased the electrolyte leakage of the plants comparing to those of nonstressed plants. Regardless of the WS level, the mycorrhizal snapdragon plants had significantly higher shoot and root dry mass (DM), WUE, flower yield, nutrient (P, N, K, Mg, and Ca) and Chl contents than those nonmycorrhizal plants grown both under WW or WS conditions. Under WS conditions, the AM colonization had greatly improved the leaf water potential (Ψw), leaf relative water content (RWC) and reduced the leaf electrolyte leakage (EL) of the plants. Although the WS conditions had markedly increased the proline content of the leaves, this increase was significantly higher in nonmycorrhizal than in mycorrhizal plants. This suggests that AM colonization enhances the host plant WS tolerance. Values of benefit and potential dry matter for AM-root associations were highest when plants were stressed and reduced under WW conditions. As a result, the snapdragon plants showed a high degree of dependency on AM fungi which improve plant growth, flower yield, water relations particularly under WS conditions, and these improvements were increased as WS level had increased. This study confirms that AM colonization can mitigate the deleterious effect of water stress on growth and flower yield of the snapdragon ornamental plant., A. A. Asrar, G. M. Abdel-Fattah, K. M. Elhindi., and Obsahuje bibliografii