Photosynthetic activity of leaf disks from chlortoluron (2 µmol per plant) treated and non-treated non-transgenic and transgenic (PGF-6) tobacco plants was measured from 1 up to 21 d after treatment under greenhouse conditions. PGF-6 plants, expressing the fused rat cytochrome P4501A1/yeast reductase genes were used. PGF-6 plants were much more chlortoluron-resistant than control plants. In non-transgenic tobacco plants the electron transport flow to PQ pool was strongly inhibited 1 d after treatment with herbicide whereas it was still existing in PGF-6 plants although some reduction was observed. The quantum yield of photosystem 2 (ΦPS2) which is related to the quantum yield of whole-chain electron transfer was much more inhibited by chlortoluron than the primary PS2 photochemistry, measured by the ratio Fv/Fm. Lower PS2 activity was found for herbicide-treated non-transgenic plants up to the 9th day. Then it started to increase in both control and PGF-6 plants, but more rapidly in PGF-6 ones, and its values were near to the control level at the 21st d after chlortoluron treatment. and E. Yordanova ... [et al.].