Drought significantly constrains higher yield of alfalfa (Medicago sativa L.) in arid and semiarid areas all over the world. This study evaluated the responses of leaf cuticular wax constituents to drought treatment and their relations to gas-exchange indexes across six alfalfa cultivars widely grown in China. Water deficit was imposed by withholding water for 12 d during branching stage. Cuticular waxes on alfalfa leaves were dominated by primary alcohols (41.7-54.2%), alkanes (13.2-26.9%) and terpenes (17.5-28.9%), with small amount of aldehydes (1.4-3.4%) and unknown constituents (4.5-18.4%). Compared to total wax contents, the wax constituents were more sensitive to drought treatment. Drought decreased the contents of primary alcohol and increased alkanes in all cultivars. Alkane homologs, C25, C27, and C29, were all negatively correlated with photosynthetic rate, transpiration rate, stomatal conductance, and leaf water potential. Under drought conditions, both stomatal and nonstomatal factors were involved in controlling water loss from alfalfa leaves. No direct relationship was observed between wax contents and drought resistance among alfalfa cultivars. An increase in alkane content might be more important in improving drought tolerance of alfalfa under water deficit, which might be used as an index for selecting and breeding drought resistant cultivars of alfalfa., Y. Ni ... [et al.]., and Obsahuje bibliografii