Photosynthetic utilization of radiant energy was studied by chlorophyll (Chl) fluorescence and maximum photosynthetic O2 evolution (Pmax) in temperate lettuce (Lactuca sativa L.) grown under natural tropical fluctuating ambient temperatures but with their roots exposed to two different root-zone temperatures (RZTs): a constant 20 °C-RZT (RZT20) and a fluctuating ambient RZT (RZTa) from 23 to 40 °C. On a sunny day, irrespective of RZT, ΔF/Fm' [ratio of the variable to maximal fluorescence under irradiation (the maximal photosystem 2 quantum yield with "actinic light")] decreased and non-photochemical quenching (NPQ) increased parallel to the increase of photosynthetic photon flux density (PPFD). However, RZTa plants showed lower ΔF/Fm' and higher NPQ than RZT20 plants. The electron transport rate (ETR) was much higher in RZT20 plants than in RZTa plants especially during moderately sunny days. There were no significant diurnal changes in Pmax although these values of RZT20 plants were much higher than those of RZTa plants. On cloudy days, no significant diurnal changes in ΔF/Fm' and NPQ occurred, but ΔF/Fm' was higher and NPQ was lower in RZT20 plants than in RZTa plants. Diurnal changes in ETR were also observed in all plants while Pmax values throughout the whole cloudy days in both RZT20 and RZTa plants were constant. Again, RZT20 plants had much higher values of Pmax than RZTa plants. During RZT transfer period, all Chl fluorescence parameters measured at midday fluctuated with PPFD. Impact of RZT on these parameters was observed 2-3 d after RZT transfer. ETR and Pmax measured with saturating PPFD in the laboratory did not vary with the fluctuating PPFD in the greenhouse but the effects of RZT on these two parameters were observed 3-4 d after RZT transfer. Thus RZT affects photosynthetic utilization of photon energy in temperate lettuce grown under natural tropical condition. and J. He, S. K. Lee.
LED lamps with various combinations of red (R) and blue (B) wavelengths were used to supplement sunlight for the growth of a heat-resistant (HR) and heat-sensitive (HS) recombinant inbred lines (RIL) of lettuce. The RB-LED ratios were 100R:0B (0B), 92R:8B (8B), 84R:16B (16B), and 76R:24B (24B) with an equal PPFD of 100 μmol m-2 s-1. The greatest leaf expansion rates were observed at 8B for both genotypes. All HR-RILs had similar values of growth parameters and specific leaf area (SLA). However, higher values of growth parameters were observed in HS-RIL with 0B, 8B, and 16B than that under 24B and sunlight. Furthermore, HS-RIL had higher SLA under 0B compared to other conditions. Photosynthetic light-use efficiency and maximal oxygen evolution rate were the lowest under 8B for both genotypes. The quality of LED lighting, if provided, seemed to implicate genotype dependence, probably as a result of their different sensitivities to heat stress., T. W. Choong, J. He, L. Qin, S. K. Lee., and Obsahuje bibliografii
Effects of elevated root-zone (RZ) CO2 concentration (RZ [CO2]) and RZ temperature (RZT) on photosynthesis, productivity, nitrate (NO3-), total reduced nitrogen (TRN), total leaf soluble and Rubisco proteins were studied in aeroponically grown lettuce plants in a tropical greenhouse. Three weeks after transplanting, four different RZ [CO2] concentrations (ambient, 360 ppm, and elevated concentrations of 2,000; 10,000; and 50,000 ppm) were imposed on plants at 20°C-RZT or ambient(A)-RZT (24-38°C). Elevated RZ [CO2] resulted in significantly higher light-saturated net photosynthetic rate, but lower light-saturated stomatal conductance. Higher elevated RZ [CO2] also protected plants from both chronic and dynamic photoinhibition (measured by chlorophyll fluorescence Fv/Fm ratio) and reduced leaf water loss. Under each RZ [CO2], all these variables were significantly higher in 20°C-RZT plants than in A-RZT plants. All plants accumulated more biomass at elevated RZ [CO2] than at ambient RZ [CO2]. Greater increases of biomass in roots than in shoots were manifested by lower shoot/root ratios at elevated RZ [CO2]. Although the total biomass was higher at 20°C-RZT, the increase in biomass under elevated RZ [CO2] was greater at A-RZT. Shoot NO3- and TRN concentrations, total leaf soluble and Rubisco protein concentrations were higher in all elevated RZ [CO2] plants than in plants under ambient RZ [CO2] at both RZTs. Under each RZ [CO2], total leaf soluble and Rubisco protein concentrations were significantly higher at 20°C-RZT than at A-RZT. Our results demonstrated that increased P Nmax and productivity under elevated [CO2] was partially due to the alleviation of midday water loss, both dynamic and chronic photoinhibition as well as higher turnover of Calvin cycle with higher Rubisco proteins. and J. He, L. Qin, S. K. Lee.
The effect of root growth temperature on maximal photosynthetic CO2 assimilation (Pmax), carbohydrate content, 14C-photoassimilate partitioning, growth, and root morphology of lettuce was studied after transfer of the root system from cool root-zone temperature (C-RZT) of 20 °C to hot ambient-RZT (A-RZT) and vice versa. Four days after RZT transfer, Pmax and leaf total soluble sugar content were highest and lowest, respectively, in C-RZT and A-RZT plants. Pmax and total leaf soluble sugar content were much lower in plants transferred from C-to A-RZT (C→A-RZT) than in C-RZT plants. However, these two parameters were much higher in plants transferred from A-to C-RZT (A→C-RZT) than in A-RZT plants. A-RZT and C→A-RZT plants had higher root total soluble sugar content than A→C-RZT and C-RZT plants. Leaf total insoluble sugar content was similar in leaves of all plants while it was the highest in the roots of C-RZT plants. Developing leaves of C-RZT plants had higher 14C-photoassimilate content than A-RZT plants. The A→C-RZT plants also had higher 14C-photoassimilate content in their developing leaves than A-RZT plants. However, more 14C-photoassimilates were translocated to the roots of A-RZT and C→A-RZT plants, but they were mainly used for root thickening than for its elongation. Increases in leaf area, shoot and root fresh mass were slower in C→A-RZT than in C-RZT plants. Conversely, A→C-RZT plants had higher increases in these parameters than A-RZT plants. Lower root/shoot ratio (R/S) in C-RZT than in A-RZT plants confirmed that more photoassimilates were channelled to the shoots than to the roots of C-RZT plants. Roots of C-RZT plants had greater total length with a greater number of tips and surface area, and smaller average diameter as compared to A-RZT plants. In C→A-RZT plants, there was root thickening but the increases in its length, tip number and surface area decreased. The reverse was observed for A→C-RZT plants. These results further supported the idea that newly fixed photoassimilates contributed more to root thickening than to root elongation in A-RZT and C→A-RZT plants. and J. He, L. P. Tan, S. K. Lee.
Photosynthetic capacities of green leaves (GL) and green flower petals (GFP) of different ages of the CAM plant Dendrobium cv. Burana Jade were studied through chlorophyll (Chl) content, Chl fluorescence characteristic Fv/Fm, maximal photosynthetic O2 evolution rates (P max), and CAM acidities [dawn/dusk fluctuations in titratable acidity (TA)]. All these photosynthetic parameters were higher in GL than in GFP. Among the different ages of GFP, the young GFP had significant higher readings of all photosynthetic parameters than the oldest GFP, indicating that reduced photosynthesis occurred in the senesced GFP. The source-to-sink relationship between GL and GFP was also studied by comparing the diurnal changes in contents of total soluble and insoluble sugars and TA between the fully irradiated (FI) control (with both irradiated GL and GFP) and GL-darkened plants (covering all GL with aluminium foils, leaving only the GFP exposed to radiation). CAM acidities were much lower in GL darkened with aluminium foils compared to those of FI-GL while there were no differences in CAM acidities of their GFP. The contents of total soluble and insoluble sugars and the CAM acidities of GL towards the end of the day were lower in GL-darkened plants compared to that of FI-plants. Hence CAM acidities of GL depended on their saccharide contents. However, diurnal changes of TA in GFP were similar in all GFP regardless of their ages, with or without GL photosynthetic sources. Thus CAM acidities of GFP are independent of GL saccharides. However, lower saccharide content in GFP (especially the oldest GFP) of GL-darkened plants implies that GFP function as sinks and depend on saccharides exported from GL for its development and growth. and J. He, W. L. Woon.
In this paper, photosynthetic characteristics of green leaves (GL) and green pseudobulbs (GPSB) of C3 orchid Oncidium Golden Wish were first studied. Light saturation for photosynthesis and maximum photosynthetic rates (Pmax) were significantly higher in GL than in GPSB. The results of the optimal PSII quantum yield (Fv/Fm ratio), electron transport rate (ETR), the effective photochemical quantum yield (ΔF/Fm') and nonphotochemical quenching (NPQ) of Chl fluorescence revealed that GPSB had lower light utilization than that of GL. Significantly higher photosynthetic pigments were found in GL than in GPSB. Alteration of source/sink ratio had no impact on all photosynthetic parameters for both GL and GPSB after a short term of 3 days or even a long term of 2 weeks of treatments although there were significant decreases in GL carbohydrate concentration of GL-darkened plants by the end of the day. However, decreases of all photosynthetic parameters of GL were observed in GL-darkened plants after 4 weeks of treatment compared to those of fully illuminated (FI) and GPSB-darkened plants. These results indicate that the level of carbohydrates in GL plays an important role in regulating their photosynthesis. Due to their lower photosynthetic capacities, GPSB function mainly as sinks. Darkening GPSB up to 2 weeks did not affect their own Pmax and the Pmax of GL and thus, did not result in significant decreases of total carbohydrate concentration of GPSB. As GPSB store a large amount of carbohydrates, it could also act as a source when the level of carbohydrates decreased. Thus, GL could depend on GPSB carbohydrates to regulate their photosynthesis when their source capacity was removed. However, 4 weeks after treatments, photosynthetic capacities of GL were significantly lower in GL- and GPSB-darkened plants than in FI plants, which could be due to the lower total soluble and insoluble sugar concentrations of both GL and GPSB in these plants. and J. He, B. H. G. Tan, L. Qin.
Photosynthetic rates of green leaves (GL) and green flower petals (GFP) of the CAM plant Dendrobium cv. Burana Jade and their sensitivities to different growth irradiances were studied in shade-grown plants over a period of 4 weeks. Maximal photosynthetic O2 evolution rates and CAM acidities [dawn/dusk fluctuations in titratable acidity] were higher in leaves exposed to intermediate sunlight [a maximal photosynthetic photon flux density (PPFD) of 500-600 µmol m-2 s-1] than in leaves grown under full sunlight (a maximal PPFD of 1 000-1 200 µmol m-2 s-1) and shade (a maximal PPFD of 200-250 µmol m-2 s-1). However, these two parameters of GFP were highest in plants grown under the shade and lowest in full sun-grown plants. Both GL and GFP of plants exposed to full sunlight had lower predawn Fv/Fm [dark adapted ratio of variable to maximal fluorescence (the maximal photosystem 2 yield without actinic irradiation)] than those of shade-grown plants. When exposed to intermediate sunlight, however, there were no significant changes in predawn Fv/Fm in GL whereas a significant decrease in predawn Fv/Fm was found in GFP of the same plant. GFP exposed to full sunlight exhibited a greater decrease in predawn Fv/Fm compared to those exposed to intermediate sunlight. The patterns of changes in total chlorophyll (Chl) content of GL and GFP were similar to those of Fv/Fm. Although midday Fv/Fm fluctuated with prevailing irradiance, changes of midday Fv/Fm after exposure to different growth irradiances were similar to those of predawn Fv/Fm in both GL and GFP. The decreases in predawn and midday Fv/Fm were much more pronounced in GFP than in GL under full sunlight, indicating greater sensitivity in GFP to high irradiance (HI). In the laboratory, electron transport rate and photochemical and non-photochemical quenching of Chl fluorescence were also determined under different irradiances. All results indicated that GFP are more susceptible to HI than GL. Although the GFP of Dendrobium cv. Burana Jade require a lower amount of radiant energy for photosynthesis and this plant is usually grown in the shade, is not necessarily a shade plant. and J. He, L. C. D. Teo