Rainfall pulses can significantly drive the evolution of the structure and function of semiarid ecosystems, and understanding the mechanisms that underlie the response of semiarid plants to rainfall is the key to understanding the responses of semi-arid ecosystems to global climatic change. We measured sap flow in the branches and stems of shrubs (Caragana korshinskii Kom. and Hippophae rhamnoides Linn.) using sap flow gauges, and studied the response of sap flow density to rainfall pulses using the ''threshold-delay'' model in the Chinese Loess Plateau. The results showed that the sap flow began about 1 h earlier, and increased twofold after rainfall, compared to its pre-rainfall value. The sap flow increased significantly with increasing rainfall classes, then gradually decreased. The response of sap flow was different among rainfall, species, position (branch and stem) during the pulse period, and the interactive effects also differed significantly (P < 0.0001). The response pattern followed the threshold-delay model, with lower rainfall thresholds of 5.2, 5.5 mm and 0.7, 0.8 mm of stem and branch for C. korshinskii and H. rhamnoides, demonstrating the importance of small rainfall events for plant growth and survival in semi-arid regions.
The experiments of stemflow of two semiarid shrubs (Caragana korshinskii and Hippophae rhamnoides) and its effect on soil water enhancement were conducted from 1st May to 30th September of 2009–2013 in the Chinese Loess Plateau. Stemflow values in C. korshinskii and H. rhamnoides averaged 6.7% and 2.4% of total rainfall. The rainfall threshold for stemflow generation was 0.5 and 2.5 mm for C. korshinskii and H. rhamnoides. When rainfall was less than 17.0 mm, the funnelling ratios were highly variable, however, stable funnelling ratios were found for rainfall greater than 17.0 mm for C. korshinskii. The funnelling ratios of H. rhamnoides first increased until a threshold value of 10.0 mm and then the funnelling ratios begin stabilize. The wetting front depths in the area around stem was 1.4–6.7 and 1.3–2.9 times deeper than area outside the canopy for C. korshinskii and H. rhamnoides. Soil moisture at soil depth 0–200 cm was 25.6% and 23.4% higher in soil around stem than that outside canopy for C. korshinskii and H. rhamnoides. The wetting front advanced to depths of 120 and 100 cm in the area around stem and to depths of 50 cm in the area outside the canopy for C. korshinskii and H. rhamnoides suggested that more rain water can be conserved into the deep soil layers through shrub stemflow. Soil moisture was enhanced in the area outside the shrub canopy, only when rainfall depth is > 4.7 and 5.1 mm, which is an effective rainfall for the area for C. korshinskii and H. rhamnoides. While for the area around stem of C. korshinskii and H. rhamnoides, the corresponding threshold values are 3.2 and 4.3 mm. These results confirmed that stemflow has a positive effect on soil moisture balance of the root zone and the enhancement in soil moisture of deeper soil layers.